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Abstract

How do investment friction and information frictions interact? We study this question in a

stylized continuous time model of heterogeneous firms facing incomplete information and

irreversible investment. We analytically characterize how the information friction distorts

firms’ decision rules and stationary distribution. The two frictions interact in rich and sub-

stantial ways. At the firm level, noisier information shrinks a firm’s inaction region and

reduces the elasticity of investment to productivity. In the aggregate, it increases steady-

state capital, increases capital misallocation, and attenuates the effect of productivity shocks

on investment. Finally, we test and confirm these predictions using Japanese administrative

data that match firms’ forecasts to their balance sheets, incomes, and expenditures.
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1 Introduction

Two firm-level frictions are known to substantially distort firm dynamics: investment and infor-

mation frictions. These frictions are crucial for understanding investment behavior at both the

micro and macro levels, which is heterogeneous in the cross-section and much less elastic to ag-

gregate shocks than frictionless models imply. And yet, both frictions have mainly been studied

independently, so the natural questions are: Do investment and information frictions interact in

economically important ways? If so, does it matter for the aggregate economy?

We explore these questions in two steps. In the first step, we construct a stylized continuous

time model of heterogeneous firms that make investment decisions with incomplete information.

The first friction is that capital investment is irreversible. Irreversibility implies inaction: many

firms do not invest over a period of time. Irreversibility distorts firm dynamics in a crucial way

(Baley and Blanco, 2022), and irreversibility is close to full for many types of capital.
1

The second

friction is that firms do not know their productivity exactly. Instead, they receive a noisy signal

of their productivity and only learn the true value with some delay. This friction represents that

there is a delay of information between when firms purchase new capital and when its effects on

revenue become apparent to decision-makers.

The tractability of the continuous time model makes it clear that these two frictions interact

in a number of meaningful ways. We start by documenting its micro implications. First, we find

that the information friction reduces a firm’s inaction region. All else equal, uncertainty about

a firm’s current productivity makes the firm more willing to invest. At first glance, this might

be surprising given the well-documented relationship between investment and uncertainty over

future productivity. When future productivity is more uncertain, firms are less willing to invest

because uncertainty increases the option value of delaying irreversible investment, also known

as the wait-and-see effect (Leahy and Whited, 1996; Hassler, 1996; Bloom, 2009; Bloom et al.,

2018). However, when current productivity is uncertain, firms prefer to invest more because the

marginal value of capital is convex in log productivity, so Jensen’s inequality makes firms act

as if they are risk-loving over productivity. This effect also holds in traditional models of future

uncertainty, but is always dominated by the wait-and-see effect.

Second, the information friction reduces the short-run elasticity of investment to productivity

shocks. This standard effect of incomplete information tends to attenuate the effects of shocks

by reducing how informative a shock is for forecasting future fundamentals. When firms receive

a productivity shock, their noisy signal increases one-for-one, but firms do not know whether

1
Ramey and Shapiro (2001) find that upon sale, aerospace plants recover less than 30% of the replacement cost of

capital; selling imposes additional wind-down costs and takes years to implement. Kermani and Ma (2023) document

that the liquidation value of capital for non-financial firms is only 35% of the net book value.
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this change was due to productivity or noise, so their productivity nowcast increases less than

one-for-one. This attenuation effect is potentially valuable for describing aggregate investment

behavior. Koby and Wolf (2020) argue that firm-level investment is relatively inelastic to aggre-

gate shocks, which is necessary to match the empirical aggregate investment dynamics over the

business cycle or responses to monetary policy shocks (Winberry, 2021; Fang, 2020). These het-

erogeneous firm models require high fixed capital adjustment costs to deliver this low elasticity

but generate unrealistic non-smooth investment distribution at the firm level; this is a challenge

for the literature. House (2014) argues that firms must face other frictions in order to have a

realistic investment elasticity. We show that information frictions can help deliver the required

low elasticity to aggregate shocks and contribute to filling the gap in the literature.

We then document its macro implications. We find that the above micro-mechanisms also

have surprising effects on the essential aggregate moments: capital accumulation, capital allo-

cation, and capital fluctuation. First, greater information frictions increase the aggregate capital

stock for the same reason that they decrease inaction: uncertainty about current productivity in-

creases firms’ willingness to invest. Second, irreversibility introduces capital misallocation, and

we show analytically that the information friction increases this misallocation. This effect occurs

as firms make investment mistakes when their expected productivity is higher or lower than the

actual level. Third, we find that the information friction actually reduces the riskiness of capital,

as measured by sales volatility. Even though firms make more mistakes, their attenuated response

to productivity shocks reduces riskiness on net.

Finally, we also find that introducing information frictions distorts the conventional rela-

tionship between volatility and investment inaction. In full information investment models, the

option value effect implies that firms facing higher productivity volatility will be more inactive

ceteris paribus. However, more severe information frictions dampen this relationship. If informa-

tion frictions are severe, then raising productivity volatility has only small effects on investment

inaction. This is because increasing productivity volatility raises the variance of nowcast errors,

leading to more severe information frictions and shrinking the inaction region. In total, this infor-

mation effect counteracts the classical option value effect, attenuating the relationship between

volatility and investment inaction.

In the second step, we test our central theoretical and quantitative predictions using Japanese

administrative data. We construct a merged firm-level dataset that combines the Business Out-

look Survey (BOS) and the Financial Statements Statistics of Corporations (FSS) conducted by

the Ministry of Finance and the Cabinet Office of Japan. The advantage of this dataset is that

firms report both realized and forecasted sales for the past semi-year and the coming semi-year

in the BOS. Therefore, we use the predictability of sales forecast errors to estimate the severity
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of information frictions at the industry level. Firms also report investment and investment plans

in the BOS and detailed information on capital stock, employment, and costs in the FSS, which

enables us to construct investment-related and productivity-related variables.

We begin our empirical work by measuring the severity of firms’ information frictions. First,

we group firms into industries based on the industry codes provided by the Ministry of Finance

and estimate the friction severity for each industry by regressing the sales forecast error on past

productivity growth. Under full information, this coefficient should be zero as past productivity

is incorporated into current beliefs immediately. However, our incomplete information model

implies that this coefficient is positive, as the incorporation of past information is incomplete and
delayed. From the data, we find that this “underreaction coefficient" is indeed positive for all

industries, albeit with substantial heterogeneity.

Next, we explore how information frictions affects firms’ investment behavior. According to

our theory, firms with more severe information frictions should be less likely to remain inactive,

conditioning on firm-level productivity and size. We test this prediction by regressing the binary

variable of investment inaction on the industry-level underreaction coefficients. The estimated

effect is indeed negative, confirming the model’s prediction. Moreover, a one standard deviation

increase in this coefficient reduces the average inaction rate at the industry level by more than five

percentage points, which is quantitatively large.
2

Then, we test the prediction of the attenuated

response of investment to productivity shocks, using an interaction term between industry-level

underreaction and the change in firm-level productivity. This interaction regression allows us to

control for all industry-level time-varying and firm-level time-invariant factors that affect firm

investment. Again, we confirm the model’s predictions: firms in industries with more severe

information frictions are less sensitive to productivity shocks.

We also test the model’s implication that information frictions attenuate the relationship be-

tween productivity volatility and investment inaction. The Japanese firms behave as predicted: a

rise in productivity volatility across regions in Japan increases the inaction rate, but less so when

firms face more severe information frictions.

Across all these tests, we directly compare our regression results with analogs generated from

simulated data using our model. Even though our model is extremely stylized, it makes clear

predictions regarding the signs of certain coefficients. Our empirical results from the firm-level

regressions comport with the model’s analytical and quantitative predictions.

Literature. First, our theoretical work is closely related to a small but growing literature on

incomplete information in continuous time models featuring inaction. In this existing literature,

2
The average inaction rate is around 36% at the semi-year frequency. Thus, so a one standard deviation increase

in the severity of the information friction reduces the conditional inaction rate by nearly 17%.
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inaction is due to fixed costs; to the best of our knowledge, we are the first to study the interac-

tion between incomplete information and irreversibility as the source of inaction. Verona (2014)

studies inattentive firms who pay fixed costs to update information (as in Reis, 2006), which leads

to periodic large investment spikes. Alvarez et al. (2011), Alvarez et al. (2016), and Stevens (2020)

study price-setting by firms facing high fixed costs to both changing prices and observing fun-

damentals. Baley and Blanco (2019) consider a model of menu costs where firms observe noisy

signals of their productivity; they predict that firms with higher uncertainty change prices more

often and learn more quickly. We also join broader literature studying how investment dynamics

are affected by irreversibility and information frictions.
3

Second, our theoretical work joins a broad literature on irreversibility and investment inac-

tion. Early work (Pindyck, 1991; Abel and Eberly, 1996; Abel et al., 1996) established the option

value of irreversibility, and more recent work (Bloom, 2009; Bloom et al., 2018) explored how such

option value affects the effects of uncertainty shocks through capital misallocation. We build on

a full irreversibility version of Baley and Blanco (2022) and show that introducing incomplete in-

formation would further intensify capital misallocation but attenuate capital fluctuations in the

short run.

Third, our empirical work is closely related to a burgeoning literature studying information

frictions originating from firms’ forecast errors of micro and aggregate variables. Seminal work

done by Coibion et al. (2018), Tanaka et al. (2020), and Candia et al. (2024) present stylized facts

concerning firm-level expectations. Several studies also use data on Japanese firm-level expec-

tations. Using a dataset of multinational firms, Chen et al. (2023b) document heterogeneity in

the information frictions firms face that varies by firm size and age. Second, Chen et al. (2023a)

document that the degree of information rigidity firms face is higher for aggregate inflation than

for firm-specific outcomes. Finally, Charoenwong et al. (2024) show how capital budgeting can

alleviate distortions originating from investment frictions and thus improve productivity.
4

Finally, our paper links to the literature that uses firm-level survey data to document how mi-

cro, industry, and macro shocks affect firms’ expectations formation. Andrade et al. (2022) show

that industry-level inflation predicts forecast errors about firms’ own prices in a survey of French

manufacturers. Massenot and Pettinicchi (2018) and Born et al. (2022) use a survey of German

3
Some canonical and more recent examples studying irreversibility include Pindyck (1991), Bertola and Caballero

(1994), Abel and Eberly (1996), Veracierto (2002), Ottonello (2017), and Baley and Blanco (2022). Stokey (2008) pro-

vides a textbook treatment. Papers studying business cycle models of capital investment with information frictions

include Townsend (1983), Angeletos and Pavan (2004), Graham and Wright (2010), Senga (2015), Angeletos et al.

(2018), and Atolia and Chahrour (2020), among many more. In particular, Adams (2023) studies a model with invest-

ment frictions that does not induce inaction; instead, firms face investment adjustment costs in the style of Christiano

et al. (2005).

4
Other papers that use Japanese firm-level expectations include Charoenwong et al. (2020), Chen et al. (2020),

Chen et al. (2022), etc.
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manufacturing firms to document how business conditions and news, respectively, predict fore-

cast errors. Other related papers include Bachmann et al. (2013), Bachmann and Elstner (2015),

Bachmann et al. (2021), Born et al. (2023a). Born et al. (2023b) survey additional work in this field,

while Candia et al. (2023) survey the larger literature studying biases in firms’ expectations of the

macroeconomy.

Layout. The remainder of the paper is organized as follows. Sections 2 and 3 lay out the model.

Section 4 quantitatively explores the model’s predictions. Section 5 describes the Japanese firm-

level data and estimation results. Finally, Section 6 concludes.

2 The Model

This section describes the economic environment, investment decisions, and information friction.

We derive the value function and optimal decisions and demonstrate analytically how investment

decisions depend on different parameters, including those controlling the information friction.

2.1 Firm’s Problem

Environment There is a unit measure of atomistic competitive firms. Firms produce using

capital 𝐾 , modified by productivity 𝐴. Their production function is 𝐹(𝐴, 𝐾) = 𝐴1−𝛼𝐾𝛼
where

𝛼 ∈ (0, 1). Investment 𝐼 is irreversible. If firms invest, they do so at cost 𝜓. Accordingly, their

instantaneous profit is 𝜋 = 𝐴1−𝛼𝐾𝛼 −𝜓𝐼 . Lowercase letters denote logs of variables, e.g., 𝑎 = ln𝐴.

Log productivity follows a random walk 𝑑𝑎 = 𝜎𝑎𝑑𝑊 𝑎
where 𝑊𝑎 is a Wiener process. The law of

motion for capital is 𝑑𝐾 = 𝐼 − 𝛿𝐾𝑑𝑡 where 𝛿 is the depreciation rate.

Optimal firm behavior for this type of problem is characterized by an inaction region: above

some level of capital (that depends on other state variables), firms choose not to invest. Firms

discount the future at a constant rate 𝑟 , so inside the inaction region, a firm’s Hamilton-Jacobi-

Bellman (HJB) equation is

𝑟𝑉 (𝐾, 𝐴) = 𝐴1−𝛼𝐾𝛼 − 𝛿𝐾𝑉𝐾 (𝐾, 𝐴) +
𝜎2
𝑎𝐴2

2
𝑉𝐴𝐴(𝐾, 𝐴) (1)

This is the full information HJB. Of course, firms will not have full information when fore-

casting. However, in the inaction region, the firm’s true value still follows this PDE. The wrinkle

to this model is that when firms do make an action, they will not know 𝐴 exactly.

Information Structure Firms do not know their productivity 𝐴 exactly. Instead, they receive
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a noisy signal 𝑠 of log productivity:

𝑠 = 𝑎 + 𝑛 (2)

where the noise 𝑛 follows a random walk:

𝑑𝑛 = 𝜎𝑛𝑑𝑊 𝑛
(3)

where the Wiener process 𝑊 𝑛
is independent of 𝑊 𝑎

.

Additionally, we assume that after 𝜏 time, the productivity level is revealed to the firm, i.e.,

at time 𝑡, firms learn the productivity that they had at time 𝑡 − 𝜏. This structure represents the

notion that decision-makers do not know exactly how productive their firm is at any moment

but learn ex-post after an accounting period is completed.

Expectation Formation To characterize how firms form expectations, it is useful to temporar-

ily introduce time subscripts, which we have suppressed so far. Productivity growth over 𝜏 time

is distributed (𝑎𝑡 − 𝑎𝑡−𝜏) ∼ 𝑁 (0, 𝜏𝜎2
𝑎), while (𝑠𝑡 − 𝑠𝑡−𝜏) is distributed 𝑁 (0, 𝜏(𝜎2

𝑎 + 𝜎2
𝑛)) due to the

independent Wiener processes 𝑊 𝑎
and 𝑊 𝑛

.

Proposition 1. For a firm with information set Ω𝑡 = {𝑎𝑗−𝜏 , 𝑠𝑗 }𝑗≤𝑡 , productivity is conditionally
distributed

𝑎𝑡 |Ω𝑡 ∼ 𝑁 (𝑎𝑡−𝜏 + 𝛾 (𝑠𝑡 − 𝑠𝑡−𝜏) , 𝜈)

where
𝛾 ≡

𝜎2
𝑎

𝜎2
𝑎 + 𝜎2

𝑛
𝜈 ≡

𝜏𝜎2
𝑎𝜎2

𝑛

𝜎2
𝑎 + 𝜎2

𝑛

Proof : Appendix B.1

Proposition 2. A firm’s expected productivity �̂� ≡ 𝔼[𝑎|Ω] and nowcast error 𝑢 follow the diffusions

𝑑�̂� = 𝜎𝑎𝑑𝑊 �̂� 𝑑𝑢 = 𝜎𝑢𝑑𝑊 𝑢

where
𝑑𝑊 �̂�

𝑡 = (1 − 𝛾)𝑑𝑊 𝐴
𝑡−𝜏 + 𝛾𝑑𝑊 𝐴

𝑡 + 𝛾
𝜎𝑛
𝜎𝑎

(𝑑𝑊 𝑛
𝑡 − 𝑑𝑊 𝑛

𝑡−𝜏)

𝑑𝑊 𝑢
𝑡 = (1 − 𝛾)

𝜎𝑎
𝜎𝑢

(𝑑𝑊 𝐴
𝑡 − 𝑑𝑊 𝐴

𝑡−𝜏) + 𝛾
𝜎𝑛
𝜎𝑢

(𝑑𝑊 𝑛
𝑡 − 𝑑𝑊 𝑛

𝑡−𝜏)

𝜎2
𝑢 = 2

𝜎2
𝑛𝜎2

𝑎

𝜎2
𝑎 + 𝜎2

𝑛

Proof : Appendix B.2

Propositions 1 and 2 describe how firms form expectations of their productivity under in-

complete information. Two parameters are worth explaining further. First, the signal coefficient
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𝛾 ≡ 𝜎2𝑎
𝜎2𝑎+𝜎2𝑛

measures how elastic firms’ expectations are to the noisy signals. Second, the now-

cast error variance 𝜈 ≡ 𝜏𝜎2𝑎𝜎2𝑛
𝜎2𝑎+𝜎2𝑛

depends on the information delay 𝜏, the noise volatility 𝜎𝑛, and

productivity volatility 𝜎𝑎. With longer delays and larger noise, firms make larger nowcast errors.

2.2 Solving the Firm’s Problem

The full information HJB equation (1) is homogeneous of degree 1 in (𝐾, 𝐴) (Stokey, 2008, Ch. 11)

so it is possible to rewrite in terms of a single variable 𝑋 ≡ 𝐾
𝐴 , which we call “normalized capital":

𝑟𝑉 (𝑋 ) = 𝑋 𝛼 − 𝛿𝑋𝑉 ′(𝑋 ) +
𝜎2
𝑎𝑋 2

2
𝑉 ′′(𝑋 ) (4)

Moreover, it is convenient to express the HJB in terms of log normalized capital 𝑥 = 𝑘 − 𝑎:

𝑟𝑣(𝑥) = 𝑒𝛼𝑥 − 𝜇𝑣′(𝑥) +
𝜎2
𝑎

2
𝑣′′(𝑥) (5)

where 𝜇 ≡ 𝛿 + 𝜎2𝑎
2 . This conversion to writing the HJB as a function of 𝑥 = log(𝑋 ) follows from

𝑣(𝑥) = 𝑉 (𝑋 ), 𝑣′(𝑥) = 𝑉 ′(𝑋 )𝑋 , and 𝑣′′(𝑥) = 𝑉 ′′(𝑋 )𝑋 2 + 𝑉 ′(𝑋 )𝑋 .

These are the usual full information HJB equations. How does incomplete information affect

the firm’s problem if it does not change the HJB equation? It changes the boundary conditions,
which are the equations characterizing optimal action. The HJB has many solutions; the correct

solution is determined by the appropriate boundary conditions.

Information is incomplete, so 𝑥 is unknown to firms when making investment decisions. The

usual optimality conditions of 𝑉 (𝑋 ) cannot be applied in this case. Instead, firms have uncer-

tainty; their expected value of 𝑉 (𝑋 ) is given by

𝔼[𝑉 (𝑋 )|Ω] = 𝔼[𝑉 (𝑋 )|�̂� ] ≡ �̂� (�̂� )

Because conditional expectations are normally distributed with constant variance (Proposition

1), expected log normalized capital �̂� ≡ 𝔼[𝑥 |Ω] is a summary statistic for firms’ expectations, as

is �̂� ≡ 𝑒�̂� , which represents the firm’s MLE nowcast of 𝑋 . The firm’s goal is thus to maximize

𝔼[𝑉 (𝑋 )|�̂� ], which we write as the expected value function �̂� (�̂� ).5

Optimal investment behavior is a threshold strategy, as in the case of full information. Except

now, a firm invests only if its expected log normalized capital normalized capital �̂� is less than

some boundary �̂�. Solving the firm’s problem involves finding the optimal choice of �̂� ≡ 𝑒�̂�.
5
Appendix A describes the general solution to the HJB equation.
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Proposition 3 reports the boundary conditions associated with the optimum. They are analogous

to the full information case.

Proposition 3. Under incomplete information, the boundary conditions consist of two value-matching
conditions:

�̂� ′(�̂�) = 𝜓 lim
�̂�→∞

�̂� ′(�̂� ) = 0

and two super contact conditions:

�̂� ′′(�̂�) = 0 lim
�̂�→∞

�̂� ′′(�̂� ) = 0

Proof: Appendix B.3

The proof is standard and follows closely the arguments in Dumas (1991). We include the

proof in order to show that we can apply the usual full information optimality conditions to the

expected value function �̂� (�̂� ).

Proposition 4 below characterizes the solution to the firm’s problem. The critical value �̂�
depends on several parameters: the variance of nowcast errors 𝜈, the returns to scale 𝛼, the cost

of investment 𝜓, as well as 𝜚 and 𝑚 defined as:

𝜚 ≡
𝜇 −

√
𝜇2 + 2𝜎2

𝑎𝑟
𝜎2
𝑎

𝑚 ≡
1

𝑟 + 𝜇𝛼 − 𝜎2𝑎
2 𝛼2

Proposition 4. The critical value of expected normalized capital is

�̂� = 𝑏𝐹𝐼 +
𝛼2𝜈

2(1 − 𝛼)

where 𝑏𝐹𝐼 is the full information critical value given by:

𝑏𝐹𝐼 =
1

(1 − 𝛼)
log(

𝑚𝛼(𝛼 − 𝜚)
𝜓(1 − 𝜚) )

Proof: Appendix B.4

Proposition 4 demonstrates how the information friction affects the firm’s optimal investment

decisions. Conveniently, most of these terms affect the critical values in the same way as in the

full information model. The proposition shows that the difference between full and incomplete

information critical values depends only on the variance of nowcast errors 𝜈, adjusted by the

returns to scale 𝛼.
6

6
This conclusion is not unique to fully irreversible investment. In Appendix C, we extend the model to allow for
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2.3 Micro Implications of Incomplete Information

We can now analytically characterize how the investment and information frictions interact to

change firms’ investment behavior. First, incomplete information reduces the inaction region.

Second, incomplete information attenuates the investment response to productivity shocks.

2.3.1 Incomplete Information and Investment Inaction

The information friction has a clear effect on the firm’s optimal behavior: stronger information

frictions shift the inaction region to the right. This is because the optimal boundaries increase as

the variance of nowcast errors 𝜈 gets larger. Corollary 1 formalizes this result.

Corollary 1. The inaction region bounds are increasing in both the noisy signal variance 𝜎2
𝑛 and

the revelation delay 𝜏.

Proof. The nowcast error variance 𝜈 = 𝜏𝜎2𝑎𝜎2𝑛
𝜎2𝑎+𝜎2𝑛

is increasing in both 𝜏 and 𝜎2
𝑛. Proposition 4 implies

that �̂�𝐿 and �̂�𝐻 are increasing in 𝜈.

Why does the information friction shift the inaction region rightwards? The most intuitive an-

swer is because the marginal value of capital is convex in log productivity 𝑎. This is true whether

information is incomplete or not. The effect of productivity is asymmetric: for the marginal value

of capital, the upside of an improvement to 𝑎 outweighs the downside of a symmetric decrease.

Thus a mean-preserving spread in 𝑎 increases the expected marginal value of capital. And a

mean-preserving spread in 𝑎 is equivalent to a mean-preserving spread in 𝑥 This makes firms

risk-loving over normalized capital: if they do not know the true value, the expected marginal

value exceeds the certainty equivalent, i.e.

𝔼[𝑉 (exp(𝑥))|Ω] > 𝑉 (exp(𝔼[𝑥 |Ω]))

The expected instantaneous return to an additional unit of marginal capital is larger when

firms are uncertain about the value of their 𝑋 . This uncertainty raises a firm’s incentive to invest,

thus they are willing to do so at higher levels of expected 𝑋 , raising the lower bound on their

inaction region.

Figure 1 plots how different parameters affect firms’ decisions. In all cases, the solid blue

line plots how �̂� depends on the parameter of interest, with all other parameters matching our

baseline calibration. The dashed red line plots the �̂� sensitivity for a “noisy" calibration, where

partial irreversibility, and come to the same conclusion: incomplete information increases inaction region boundaries

relative to the full information cast.
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the noise standard deviation 𝜎𝑛 is twice that of the baseline calibration. In all cases, the dashed

red line is above the solid blue line: when firms have worse information, they are more willing to

invest, as implied by Corollary 1.

Figure 1: How the Boundary �̂� Depends on Various Parameters

(a) Investment Cost (b) Interest Rate

(c) Revelation Delay (d) Productivity Volatility

The first two panels are standard. Panel 1a shows that �̂� is decreasing in the investment cost

𝜓: when capital is more expensive, firms are less willing to invest and do so only when their

normalized capital is lower. Similarly, 1b shows that �̂� is decreasing in the interest rate 𝑟 : when

firms discount the future at a higher rate, they are less willing to invest. The information friction

raises the inaction boundary for all values of 𝜓 and 𝑟 , but does not fundamentally change how

inaction depends on these parameters.

The next two panels show how signal noise interacts with parameters. Panel 1c demonstrates

the other way that the information friction increases willingness to invest. �̂� increases in 𝜏, the

amount of time before productivity is revealed to the firm. Larger values of 𝜏 make firms less

certain about their current productivity level, increasing their nowcast error variance (Proposi-
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tion 1). When 𝜏 is larger, the information friction is worse. Like 𝜎𝑛, exacerbating the information

friction increases the incentive to invest and raises �̂�. Moreover, when the delay is larger, the sig-

nal noise volatility has even stronger effects, because firms accumulate disproportionately more

noise in their signals. This is why the curves diverge in Panel 1c.

The most unusual result is in Panel 1d, which plots how �̂� depends on the productivity stan-

dard deviation 𝜎𝑎. The standard result is higher productivity volatility should make firms less

willing to invest because it increases the option value of waiting (Leahy and Whited, 1996; Has-

sler, 1996). This is the case in our model, too: raising volatility reduces the boundary, i.e., making

firms less willing to invest. However, volatility also plays a role in information friction. When

volatility increases, firms’ nowcasts are less accurate (𝜈 decreases in 𝜎𝑎). This information effect

attenuates the standard option-value effect of volatility on inaction. And the attenuating informa-

tion effect is stronger when signals are noisier. Panel 1d makes this clear: if signals are relatively

precise (solid blue line), then volatility sharply reduces the boundary, but if signals are relatively

noisy (dashed red line), then volatility has less effect on inaction.

This result demonstrates a new channel by which “uncertainty" affects capital investment.

The traditional wait-and-see channel is that uncertainty over future productivity reduces the in-

centive to invest by increasing the option value of delaying new capital. In recent work, uncer-

tainty has been documented to be a major driver of business cycles, and this investment wait-

and-see channel is considered a central mechanism (Bloom, 2009; Bloom et al., 2018). The new

information channel is that uncertainty over current productivity increases the incentive to invest.

Moreover, these two channels interact. The non-monotonicity in Panel 1d demonstrates that if

the information channel is strong enough, it can reverse the investment effect of uncertainty over

future productivity when the volatility of productivity shocks is not too high.

2.3.2 Incomplete Information and Investment Sensitivity

The information friction attenuates the short-run impact of shocks by reducing the passthrough

from productivity shocks to firms’ productivity expectations. With full information, productivity

shocks affect forecasts one-for-one because productivity follows a random walk. This is not the

case when information is incomplete.

Proposition 5 shows that the short-run attenuation depends on 𝛾 = 𝜎2𝑎
𝜎2𝑎+𝜎2𝑛

, as defined in Propo-

sition 1. When the noise variance 𝜎2
𝑛 is large, then signals are noisy, and productivity shocks have

little effect on firms’ immediate nowcasts. But as 𝜎2
𝑛 → 0, firms more accurately nowcast their

productivity and approach the full information case.
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Proposition 5.

𝑑
𝑑𝑊 𝑎

𝑡−ℎ
𝔼[𝑎𝑡 |Ω𝑡] =

⎧⎪⎪
⎨⎪⎪⎩

𝛾 0 ≤ ℎ < 𝜏

1 ℎ ≥ 𝜏

Proof: Appendix B.5

Proposition 5 above implies that the immediate passthrough of a productivity shock to the

firm’s expected log normalized capital (�̂� = 𝑘− �̂�) is −𝛾 . Thus, any quantity that depends on �̂� will

be similarly attenuated in the short run, e.g., the average time until leaving the inaction region,

the expected investment over a time period, and so forth. However, because the true productivity

level is eventually revealed to firms, Proposition 5 also says that the long-run passthrough from

productivity to nowcasts and forecasts is one-for-one.

What does this result imply for tests of incomplete information? In Section 5, we estimate

a standard underreaction coefficient (Kohlhas and Walther, 2021). Corollary 2 derives how this

coefficient – the effect of productivity shock 𝑑𝑊 𝑎
𝑡 on forecast error (𝑎𝑡+ℎ − 𝔼[𝑎𝑡+ℎ|Ω𝑡]) – depends

on the information friction parameters in the model.

Corollary 2. A firm’s underreaction coefficient is

𝑑(𝑎𝑡+ℎ − 𝔼[𝑎𝑡+ℎ|Ω𝑡])
𝑑𝑊 𝑎

𝑡
= 1 − 𝛾

Proof. Log productivity 𝑎𝑡 follows a random walk, which implies

𝑑(𝑎𝑡+ℎ − 𝔼[𝑎𝑡+ℎ|Ω𝑡])
𝑑𝑊 𝑎

𝑡
=
𝑑𝑎𝑡+ℎ
𝑑𝑊 𝑎

𝑡
−
𝑑𝔼[𝑎𝑡 |Ω𝑡]
𝑑𝑊 𝑎

𝑡
= 1 −

𝑑𝔼[𝑎𝑡 |Ω𝑡]
𝑑𝑊 𝑎

𝑡

with
𝑑𝔼[𝑎𝑡 |Ω𝑡 ]
𝑑𝑊 𝑎

𝑡
= 𝛾 by Proposition 5.

3 The Macroeconomy

To characterize the aggregate economy, we first must make several assumptions about the dis-

tribution of firms. We derive the partial differential equations governing the dynamics of firm

distributions and solve explicitly for the stationary distribution. Then, we characterize how the

information friction affects macroeconomic aggregates.
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3.1 Firm Entry and Exit

We assume that a measure 𝜂 of firms enter the economy at every moment. Entering firms do not

know their productivity. They are as uncertain as existing firms, i.e., their Bayesian prior is that

their log productivity is normally distributed with variance 𝜈.

Across entering firms, expected log productivity �̂� is distributed by �̂�𝑒𝑛𝑡𝑒𝑟 ∼ 𝑁 (0, 𝜍). Thus,

the entering distribution of actual log productivity is 𝑎𝑒𝑛𝑡𝑒𝑟 ∼ 𝑁 (0, 𝜍 + 𝜈). Firms’ log expected

normalized capital �̂� enters at the critical value �̂�: �̂�𝑒𝑛𝑡𝑒𝑟 = �̂�. This is a natural assumption for

the entering distribution of capital: firms are born with some unknown productivity level and

acquire capital until they are no longer willing to invest. Firm exit is random, independent of

other variables. We assume that when firms exit, their value is returned to shareholders, so the

exit risk does not change the firm’s HJB equation. For the probability distribution to integrate

into one, firms must exit at the same rate they enter: 𝜂.

3.2 The Stationary Distribution of Normalized Capital

Proposition 2 implies that expected normalized capital �̂� = 𝑘 − �̂� follows the diffusion

�̂� = −𝛿𝑑𝑡 − 𝜎𝑎𝑑𝑊 �̂�

Firms exit at rate 𝜂, so the Kolmogorov Forward equation (KFE) for the distribution ℎ(�̂� , 𝑡) of

expected normalized capital in the inaction region is

𝜕𝑡ℎ(�̂� , 𝑡) = 𝛿𝜕�̂�ℎ(�̂� , 𝑡) + 𝐷𝜕2�̂�ℎ(�̂� , 𝑡) − 𝜂ℎ(�̂� , 𝑡)

where 𝐷 ≡ 𝜎2𝑎
2 . PDFs written without time arguments denote stationary distributions. The KFE

for the stationary distribution of expected normalized capital is thus

0 = 𝛿ℎ′(�̂�) + 𝐷ℎ′′(�̂�) − 𝜂ℎ(�̂�) (6)

The boundary condition is that ℎ(�̂�) must integrate to one on the interval [�̂�,∞). Proposition 6

below gives the solution.

Proposition 6. The stationary distribution of expected normalized capital ℎ(�̂�) for �̂� ≥ �̂� is

ℎ(�̂�) = 𝜌𝑒−𝜌(�̂�−�̂�), where 𝜌 ≡
𝛿
𝜎2
𝑎
+

√
𝛿2

𝜎4
𝑎
+ 2

𝜂
𝜎2
𝑎
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Proof: Appendix B.6

Proposition 6 shows that the information friction does not affect the shape of the stationary

distribution ℎ(�̂�). The root 𝜌 is determined from purely economic fundamentals: depreciation 𝛿,

productivity volatility 𝜎𝑎, and exit risk 𝜂; 𝜈 never appears. The information friction only shifts

the stationary distribution left or right by determining the lower bound �̂�.

The joint distribution 𝑓�̂� ,𝑢(�̂� , 𝑢) of expected normalized capital �̂� and productivity nowcast

errors 𝑢 = 𝑎 − �̂� follow straightaway from Proposition 6, because nowcast errors must be inde-

pendent of nowcasts. Thus, their joint distribution is the product of their marginal distributions:

𝑓�̂� ,𝑢(�̂� , 𝑢) = ℎ(�̂�)𝜙(
𝑢
√
𝜈
)

where 𝜙(⋅) is the standard normal pdf. From the joint distribution, it is straightforward to calculate

the marginal distribution distribution 𝑓𝑥(𝑥) of actual normalized capital 𝑥 = �̂� − 𝑢. Proposition 7

below shows the stationary distribution of log normalized capital.

Proposition 7. The stationary distribution of log normalized capital is

𝑓𝑥(𝑥) = ℎ(𝑥)𝑒
𝜈𝜌2
2 Φ

(
𝑥 − (�̂� + 𝜈𝜌)

√
𝜈 )

where Φ(⋅) is the standard normal CDF.

Proof : Appendix B.7

We illustrate the differences between the two distributions. Figure 2 plots how the stationary

distribution of realized normalized capital 𝑓𝑥(𝑥) compares to the distribution ℎ(�̂�) of expected
normalized capital. ℎ(�̂�) is monotonic and has a discrete lower bound at the barrier �̂� . In contrast,

normalized capital 𝑥 = �̂� − 𝑢 is smoothed out because it subtracts an independent Gaussian.

Instead of featuring a lower bound, it has an infinite domain. And Proposition 7 implies that the

larger the nowcast error variance 𝜈, the more smooth the distribution is.

What is the firm size distribution? We have characterized the distribution of normalized

capital; to answer this question, we need to decompose normalized capital into its capital and

productivity components. To do this, we need to solve the KFE in multiple dimensions. In the

inaction region, the KFE for the distribution of capital and expected productivity 𝑔(𝑘, �̂�, 𝑡) is

𝜕𝑡𝑔(𝑘, �̂�, 𝑡) = 𝛿𝜕𝑘𝑔(𝑘, �̂�, 𝑡) + 𝐷𝜕2�̂�𝑔(𝑘, �̂�, 𝑡) − 𝜂𝑔(𝑘, �̂�, 𝑡) (7)
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Figure 2: Stationary Distributions for Expected and Realized Normalized Capital

With the stationary distribution satisfying the partial differential equation

0 = 𝛿𝜕𝑘𝑔(𝑘, �̂�) + 𝐷𝜕2�̂�𝑔(𝑘, �̂�) − 𝜂𝑔(𝑘, �̂�) (8)

This distribution is more challenging to characterize analytically than the univariate normalized

capital distribution. Therefore, we solve for this distribution numerically in Section 4 below.

3.3 Macro Implications of Incomplete Information

Having a closed-form solution for the steady-state distribution of expected normalized capital

is valuable because it allows us to characterize in the closed form how various macroeconomic

aggregates depend on the parameters of the information friction. In this section, we show that

information frictions increase both capital misallocation and average normalized capital.

3.3.1 Capital Accumulation

Aggregate normalized capital �̄� in the economy is given by

�̄� ≡ ∫
∞

−∞
𝑒𝑥𝑓𝑥(𝑥)𝑑𝑥

where 𝑓𝑥(𝑥) is the stationary distribution of log normalized capital as defined in Proposition 7.
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We documented in Section 2.2 that the information friction increases firms’ willingness to

build capital. Noisier information raised the lower bound on firms’ inaction region. This effect

increases aggregate normalized capital, as Proposition 8 demonstrates.

Proposition 8. If 𝜌 > 1, then steady state normalized capital is finite and increasing in both the
noisy signal variance 𝜎2

𝑛 and the revelation delay 𝜏.

Proof : Appendix B.8

3.3.2 Capital Misallocation

We measure misallocation as the variance of the log marginal product of capital:

𝑉 𝑎𝑟 [log
𝜕𝐹(𝐴, 𝐾)
𝜕𝐾 ] = (1 − 𝛼)2𝑉 𝑎𝑟[𝑥]

The information friction increases capital misallocation in a straightforward way. Misallo-

cation can be decomposed into two components: dispersion in expected capital 𝑉 𝑎𝑟[�̂�] and dis-

persion in nowcast errors. The former is due to endogenous decisions, while the latter is due

to mistakes made by firms that do not know their productivity. Proposition 9 shows that the

information friction increases misallocation entirely due to mistakes.

Proposition 9. Steady state capital misallocation is increasing in both the noisy signal variance 𝜎2
𝑛

and the revelation delay 𝜏.

Proof. Normalized capital is decomposed into nowcast errors by 𝑥 = �̂� − 𝑢. �̂� and 𝑢 are indepen-

dent, so

𝑉 𝑎𝑟[𝑥] = 𝑉 𝑎𝑟[�̂�] + 𝜈

where 𝜈 = 𝜏𝜎2𝑎𝜎2𝑛
𝜎2𝑎+𝜎2𝑛

is the nowcast error variance. Proposition 6 implies that 𝑉 𝑎𝑟[�̂�] is independent

of the information friction parameters. Thus misallocation is increasing in 𝜈, which is increasing

in 𝜎2
𝑛 and 𝜏.

4 Quantitative Analysis

In this section, we quantitatively solve the model to demonstrate the theoretical properties and

predictions. We proceed in two ways. First, we solve the model directly following the KFE in
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the one-dimensional space of �̂� . Second, we simulate the joint distribution of firms in the two-

dimensional space of {�̂�, 𝑘}. Finally, we generate a simulated firm sample with 10,000 firms and

50 quarters according to our calibration of Japanese firm-level data to show model predictions.

4.1 Parameterization

We calibrate our model quantitatively in Table 1 to roughly match our Japanese firm-level data on

a quarterly frequency in Table 2. We first fix the interest rate 𝑟 to be 1% to match an annual rate of

4%, returns to scale 𝛼 of two-thirds,
7

and a one-period revelation delay before past productivity

is revealed, consistent with quarterly accounting reports. We then choose an exit rate 𝜂 of 2%

to match an annual exit rate of 8% and a depreciation rate 𝛿 of 0.0136 to match the aggregate

quarterly investment rate of 1.36%. Finally, we jointly fit the volatility of productivity and noise

shocks to match the investment rate mean and standard deviation.

Table 1: Calibration in Quarterly Frequency

Parameter Interpretation Value Reference

Fixed Parameters
𝑟 Real interest rate 0.01 Annual rate of 4%

𝛼 Return to scale 0.67 Investment literature

𝜓 Investment cost 1.00 Normalization

𝜏 Revelation delay 1 Accounting report delay

𝜂 Exit risk 0.02 Japanese firm-level data

𝛿 Depreciation rate 0.0136 Japanese firm-level data

Fitted Parameters
𝜎𝑎 S.D. of productivity process 0.20 Japanese firm-level data

𝜎𝑛 S.D. of noise process 0.20 Japanese firm-level data

Notes: We choose the parameters to roughly match the moments from the Japanese firm-

level data. We do not aim to match all the moments exactly since we only have three fitted

parameters. We target the investment rates and volatility, leaving investment inactions

and spikes untargeted. We also report the full information model when 𝜎𝑛 = 0.

We report the moments of the baseline model and their comparison to a full information

model in stationary equilibrium in Table 2. Since we aim to keep the baseline model simple,

our degrees of freedom are only two parameters: the volatility of productivity shock 𝜎𝑎 and the

volatility of noise shock 𝜎𝑛. Therefore, we cannot jointly target all five micro-level investment

moments perfectly. Still, the calibrated model does generate substantial inaction and spikes in

firm-level investment rates. Our inaction rate is higher than in the data, partially because of the

7
We choose 𝛼 = 0.67 in the middle of the range in the investment literature [0.50, 0.85] from 0.50 in Baley and

Blanco (2022), 0.60 in Baley and Blanco (2021), 0.75 in Abel and Eberly (1999) and Bloom et al. (2018), 0.77 in House

(2014), and 0.85 in Winberry (2021). The choice of 𝛼 will not qualitatively affect the model results.
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Table 2: Moments in Quarterly Frequency

Moments Data Baseline Full Info.

Targeted Moments
Average Exit Rate 2% 2% 2%

Aggregate Investment Rate 1.36% 1.36% 1.36%

Investment Rate Mean 2.10% 2.63% 2.86%

Investment Rate S.D. 7.1% 7.1% 8.7%

Untargeted Moments
Investment Inaction Rate 57.8% 79.7% 82.9%

Investment Spike Rate 1.4% 4.5% 5.5%

Notes: This table summarizes our moments simulated from the model with 500,000 firms

for 500 quarters and their mapping to our data. Data Sources: Economic Outlook Sur-

vey and Financial Statement Survey of Corporations of Japan (2004-2019). All statistics

are calculated using variables defined at the quarterly frequency. Investment is the sum

of equipment/machinery/land investments. Capital is the amount of fixed capital. In-

vestment spike refers to an investment rate > 20%, and investment inaction refers to an

investment rate ≤ 1%. Forecast error is defined as the log deviation of the realized sales in

period 𝑡 from the sales forecast made in period 𝑡 −1. Top and bottom 1% log sales forecast

errors are trimmed (i.e., outliers). The average revenue of firms is around 38 billion JPY

(equivalently 330 million USD) per semi-year.

sample selection of our dataset, which features larger-than-average firms.

4.2 Quantification of the Micro and Macro Implications

In this section, we provide a quantitative analysis of our model properties. We start by analyzing

how the firm size distribution and investment decisions are affected when information frictions

are present. We then proceed to study how different degrees of information friction severity

affect investment sensitivity to productivity shocks and other moments. Finally, we conclude

this section by studying the dynamic responses of investment to aggregate productivity shocks.

4.2.1 Simulations with Incomplete Information

We simulate twenty-one industries with different levels of information friction {𝜎𝑛,𝑠 = 0.01 × 𝑠}20𝑠=0
to show the effects of incomplete information on various moments of investment dynamics. Each

industry has again 10,000 firms for 50 quarters. Our major targets of interest are how investment

inaction and elasticity of investment to productivity shocks differ under different degrees of in-

formation friction. More specifically, we show how investment inaction and the elasticity of

investment to productivity shocks change with the underreaction coefficient 1 − 𝛾𝑠 (Corollary 2).

A smaller 𝛾𝑠 denotes more severe information frictions. When 𝛾𝑠 = 1, the model reduces to the

full information case.
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4.2.2 Micro Implications of Incomplete Information

Investment Inaction We first quantify how much the information friction reduces a firm’s

inaction region. As suggested by our theoretical analysis, all else equal, uncertainty about a

firm’s current productivity makes the firm more willing to invest. We show the quantitative

results in Figure 3. Quantitatively, when the underreaction coefficient 1 − 𝛾 increases from 0 to

0.5, investment inaction reduces by about 4 percentage points. The correlation almost has a linear

trend, starting from no information friction 1 − 𝛾 = 0.0 to noise as large as productivity volatility

1 − 𝛾 = 0.5.

Figure 3: Effects on Investment Inaction: Industry-level Correlation
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Note: We show how the industrial average inaction rate changes with the information

friction. Each dot represents an industry’s average investment inaction rate with under-

reaction coefficient 1 − 𝛾 . The result shows that firms in industries with a more severe

information friction are less likely to stay in the inaction regions.

Investment Sensitivity We then show how the industrial average investment elasticity to

productivity shocks changes with the information friction in Figure 4. Each dot represents the

𝐸𝑠[𝑖𝑖,𝑡+1/𝑤𝑖,𝑡] where 𝑖𝑖,𝑡+1 is firm 𝑖’s investment rate at time 𝑡, 𝑤𝑖,𝑡 = 𝑎𝑖,𝑡−𝑎𝑖,𝑡−1 is firm 𝑖’s productivity

shock at time 𝑡, and 𝑠 indicates which industry the firm is at. In panel (a), investment inactions

𝐼𝑖,𝑡+1 = 0 are included, while in penal (b), inactions are excluded. The result shows that firms

in industries with a more severe information friction are less responsive to productivity shocks,

consistent with the theory. Quantitatively, when the underreaction coefficient 1 − 𝛾 increases

from 0 to 0.5, the elasticity of investment rate to productivity shocks reduces by 30% to 45%,

depending on whether inactions are included.
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Figure 4: Effects on Investment Sensitivity: Industry-level Correlation
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Note: We show how the industrial average immediate investment rate response to produc-

tivity shocks changes with the information friction. Each dot represents the 𝐸𝑠[𝑖𝑖,𝑡+1/𝑤𝑖,𝑡]
where 𝑖𝑖,𝑡+1 is firm 𝑖’s investment rate at time 𝑡, 𝑤𝑖,𝑡 = 𝑎𝑖,𝑡 − 𝑎𝑖,𝑡−1 is firm 𝑖’s productivity

shock at time 𝑡, and 𝑠 indicates which industry the firm is at. In penal (a), investment

inactions 𝐼𝑖,𝑡+1 = 0 are included, while in penal (b), inactions are excluded. The result

shows that firms in industries with a more severe information friction are less responsive

to productivity shocks, consistent with the theory.

4.2.3 Macro Implications of Incomplete Information

Capital Misallocation To show the role of the information friction on capital misallocation,

we compare the baseline model to three alternative models with different levels of information

incompleteness (from the case of full information 𝜎𝑛,𝑠 = 0 to the case that the standard deviation

of the noise shock is three times relative to the standard deviation of the productivity shock

𝜎𝑛,𝑠 = 0.6 where 𝑠 denote a specific industry 𝑠) to show the effects of incomplete information on

various objects of investment dynamics.

Figure 5 presents the joint stationary distributions for capital and productivity. Panel (a)

presents the full information case, while panel (b) presents the baseline incomplete information

case. Panels (c) and (d) are cases where we have even noisier incomplete information. These plots

show the role that information frictions play in terms of how firms adjust their capital stock in

noisy scenarios. Specifically, we see that firms tend to remain closer to the boundary relative to

incomplete information under full information. Moreover, we see that when information becomes

incomplete, firms start making mistakes: there is relatively more mass to the left of the boundary.

These two-dimension distributions validate Proposition 9 that more severe information friction

leads to more severe capital misallocation.
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Figure 5: Simulated Joint Stationary Distribution for Capital and Productivity

(a) Full Information (𝜎𝑛 = 0.00) (b) Baseline Model (𝜎𝑛 = 0.20)

(c) More Noise (𝜎𝑛 = 0.40) (d) Very Noisy (𝜎𝑛 = 0.60)

Note: Histograms generated using simulated data for 500,000 firms.

Aggregate Attenuation of Productivity Shocks Finally, we show how aggregate productiv-

ity shocks affect expected log normalized capital �̂� . Under incomplete information, an aggregate

shock to expected productivity differs from one to actual productivity.
8

We define an aggregate

shock as an exogenous increase of one quarterly standard deviation 𝜎𝑎 in the log productivity of

all firms. The aggregate shock induces a shift in the distribution of normalized capital, which is

illustrated in Figure 6.

Figure 6 shows that the aggregate shock immediately pushes many firms to the barrier. If the

aggregate shock pushes a firm’s normalized capital past the barrier �̂�, the firm immediately invests

in capital to remain at the barrier. Then after the shock, firms start adjusting their expected log

normalized capital levels in several directions: we observe firms moving away from the boundary

8
Notice that the two responses are equivalent under full information.

21



Figure 6: Response of the Normalized Capital Distribution to an Aggregate Productivity Shock
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where the is excess mass, but we also observe firms moving toward the boundary, as the mass on

higher values of normalized capital is lost relative to the initial equilibrium.

To analyze the response of average expected normalized capital, we define the impulse re-

sponse function (IRF) as

𝐼𝑅𝐹�̂�(𝑡) = ∫
�̂�
�̂�ℎ(�̂� , 𝑡)𝑑�̂�

where ℎ(�̂� , 0) is the perturbation to the distribution caused by the aggregate shock. Panel (a) in

Figure 7 presents the average response of expected normalized capital (solid blue line). We see

that the aggregate shock lowers the average expected capital, but after nearly two years, it is

roughly back to its long-run average.

To illustrate the role of the information friction, we study two exercises: (1) we consider a

noisier signal, characterized by the increased variance of the noise 𝜎𝑛, and (2) we allow for a

longer horizon in terms of the revelation delay 𝜏. In particular, we explore cases where 𝜎𝑛 = 0.6
(in the baseline case 𝜎𝑛 = 0.2) and 𝜏 = 4 (1 in the baseline scenario). For completeness, we also

add the full information case. The red dashed line in panel (a) ((b)) in Figure 7 presents the IRF

of average log expected normalized capital �̂� for the noisier signal when 𝜏 = 1 (𝜏 = 4). The

black dotted line corresponds to the average log expected normalized capital response under full

information case, for 𝜏 = 1 and 𝜏 = 4.

Figure 7 shows the role of the information friction: higher noise variance attenuates the re-

sponse of expected normalized capital. Panel (b) shows that the discrepancy mentioned above

is exacerbated when the revelation delay is one year rather than a quarter. Intuitively, the re-

sponse of average expected capital is more severely attenuated the longer it takes the average
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Figure 7: Aggregate Impulse Response Function to a Productivity Shock
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(a) 𝜏 = 1
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(b) 𝜏 = 4

firm to realize whether the shock it is experiencing is noise or a truly productive one. Lastly, the

responses of expected normalized capital are identical across revelation delays when firms have

full information; in this case, the information delay 𝜏 does not matter for firms’ decisions.

5 Empirical Validation with Microdata

This section uses Japanese firm-level data to test our key theoretical predictions. Moreover, we

run the same regressions using the microdata and the simulated data and compare the results

directly. We show that some key coefficients estimated from our firm-level data are consistent

with those obtained using the model’s simulated data.

5.1 Japanese Firm-level Data

We use the Business Outlook Survey (BOS) and the Financial Statements Statistics of Corpora-

tions (FSS) conducted by the Ministry of Finance and the Cabinet Office of Japan. The two quar-

terly datasets cover all large firms and a representative sample of small and medium-sized firms.

Both datasets cover manufacturing and non-manufacturing enterprises. While both datasets sur-

vey large firms every quarter, medium-sized and small firms are randomly sampled regularly.
9

9
In BOS, all firms with registered capital above 2 billion JPY are sampled every quarter. For firms with registered

capital between 0.5 billion JPY and 2 billion JPY, 50% are randomly sampled every quarter. For firms with registered

capital between 0.1 billion JPY and 0.5 billion JPY, 10% are randomly sampled every quarter. For firms with registered

capital less than 0.1 billion JPY, 1% are randomly sampled every quarter. The random sample is redrawn at the

beginning of each fiscal year. Therefore, if a firm is selected in a given fiscal year, it will appear in the survey in all
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The sample size of the BOS is about 11,000 (response rate of more than 75%), and the sam-

ple size of the FSS is about 21,000 (response rate of about 70%). The FSS covers basic financial

statement information in the balance sheet and profit and loss account, while the BOS contains

firm-level forecasts of sales, profit (at the semi-year frequency), and firms’ investment and invest-

ment plans (at the quarterly frequency). Fortunately, both datasets have common time-invariant

firm identifiers for firms with registered capital above 1 billion JPY (about 6 million USD in July

2024). As a result, we merge the two datasets and construct a panel dataset that only contains

firms with registered capital above 1 billion JPY for 2004-2018.

The unique feature of the BOS is that it provides quantitative forecasts on sales and profits,

which allows us to calculate the forecast error. The frequency of reporting both the realized

and expected sales and operating profits is semi-annual. In contrast, the frequency of reporting

investment plans is quarterly.
10

As the forecasting targets (i.e., sales and profits) are at the semi-

year level, we define various variables (e.g., sales, investment, usage of intermediate goods, and

productivity) at the semi-year frequency in our analysis. Additionally, the BOS asks firms to

report investment directly. Thus, the data allow us to directly measure investment rather than

backing it out using information on capital stock.

Table 8 in the appendix presents the summary statistics of observations in our merged and

original FSS datasets. First, the number of firms per quarterly is roughly 6,500 in our merged

dataset, compared with 21,000 observations in the original FSS dataset. Second, firms are, on

average, quite large in both datasets, as the average employment and sales are above 490 and

8500 million JPY (7 million USD) per quarter.

5.2 Construction of Variables

In five steps, we construct variables of interest in the closest way possible, as in our model. First,

we calculate the percentage and logarithm forecast errors by taking the percentage difference of

the realized value from the forecasted value, which is made at the beginning of each semi-year.

Second, we calculate the firm-level investment rate and directly define investment inaction/spike

at the firm level since the dataset contains information on fixed investment and fixed capital

stock.
11

Third, we group firms into 30 industries based on their original industry affiliations

four quarters of that fiscal year. In FSS, all firms with registered capital above 5 billion JPY are sampled quarterly.

For firms with registered capital between 1 billion JPY and 5 billion JPY, 50% are randomly sampled every quarter.

10
For instance, the firm is asked to report realized sales from April to September and its projected sales for the

following October to March of next year, when it is surveyed in October. In the same survey, the firm also reports

its investment plan for October to December and January to March next year.

11
“Investment spike" refers to an investment rate > 20%, and “investment inaction" refers to an investment rate

≤ 1%. The average revenue of firms is around 38 billion JPY (equivalently 330 million USD) per semi-year.
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reported in the data (47 industries), as more than a dozen industries have too few observations

in a given quarter. Fourth, we define labor productivity using revenue per worker as the main

productivity measure.
12

In the data, we have information on total sales, the cost of goods sold

(including capital appreciation and labor costs), depreciation of capital, and labor costs (wage,

salary, and benefits). Thus, we can back out of the purchase of intermediate goods. Finally, we

calculate the total amount of fixed investment in a given semi-year by summing up the investment

amounts in the two quarters that belong to the same semi-year.

Tables 7 and 9 in the appendix present summary statistics of our constructed (fixed capital)

investment-related variables and summary statistics of our constructed (untrimmed) forecast er-

rors, respectively. Statistics from Table 7 confirm that firms in our merged dataset are large,

as the average (and aggregate) investment rate and the average investment spike rate are low.

Moreover, the average inaction rate is low, and the autocorrelation of the investment rate is high.

Finally, from Table 9, we observe that although the median of the two forecast errors is extremely

close to zero, the standard deviation is quite substantial. This shows that there is substantial het-

erogeneity in the constructed forecast errors across firms and over time. We also trim top and

bottom 1% sales forecast errors (i.e., outliers) in our empirical regressions.

5.3 Information Incompleteness Estimation

To provide evidence on how the severity of the information friction affects a firm’s investment

choice, we estimate the industry-specific underreaction coefficient 𝜉𝑠, using calculated forecast

errors and the measured past productivity shocks:

𝑒𝑖𝑡+1 = 𝜉𝑠𝑤𝑖𝑡 + Γ𝑧𝑖𝑡 + 𝛾𝑠𝑡 + 𝛾𝑟𝑡 + 𝛾𝑔𝑡 + 𝜖𝑖𝑡+1 (9)

where 𝑒𝑖𝑡+1 = 𝑦𝑖𝑡+1 − 𝑦𝑖𝑡+1 denotes the firm’s forecast error between the realized 𝑦𝑖𝑡+1 and the

forecasted 𝑦𝑖𝑡+1 at time 𝑡. 𝑤𝑖𝑡 = 𝑎𝑖𝑡 − 𝑎𝑖𝑡−1 denotes the measured productivity shock where 𝑎𝑖𝑡 is

the firm’s measured productivity at time 𝑡 and 𝑎𝑖𝑡−1 is the firm’s measured productivity at time

𝑡 − 1. Our coefficient of interest is the industry-specific underreaction coefficient 𝜉𝑠. We include

past measured productivity 𝑎𝑖𝑡−1 in 𝑧𝑖𝑡 as firm-level control, 𝛾𝑠𝑡 as industry-year, 𝛾𝑟𝑡 as region-year,

and 𝛾𝑔𝑡 as size-year fixed effects, respectively. The region here refers to the prefecture, and the

group of size contains two size groups. Figure 8 shows the estimated coefficients and their 95%
12

We prefer to use labor productivity instead of the TFP in our baseline estimation for two reasons. First, we need

to impose assumptions in order to estimate the production function and, thus, the TFP. Second, as all the estimated

coefficients of the production function contain confidence intervals, the TFP that is calculated using these coefficients

would be imprecisely estimated rather than directly observed. Thus, revenue per worker is the productivity measure

used to measure the regression results reported in this section. However, we also repeat our tests with TFP in

Appendix D.5.
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confidence intervals. It is clear from the figure that the estimated industry-specific coefficient 𝜉𝑠
is always positive and statistically significant for most industries. Importantly, this coefficient

varies substantially across industries, ranging from 0.006 to 0.055.

Figure 8: Estimated Attenuation Coefficients across Industries: Labor Productivity

Note: This figure shows how the coefficient governs the impulse response of the (log) sales forecast

error made in period 𝑡 + 1 with respect to the realized (log) productivity innovation in period 𝑡.
Each dot denotes the estimate for an industry (with the 95% confidence interval), and there are

30 industries in total. Top and bottom 1% observations are trimmed out (i.e., outliers). The data

frequency is semi-year, and the productivity measure measures labor productivity.

5.4 Information Frictions and Micro Investment Behaviors

Investment Inaction First, we ran regressions to test whether the industry-level coefficient

𝜉𝑠 negatively affects the probability of not investing in fixed capital at the firm level, specifically

firm-level investment inaction:

𝑦𝑖𝑡 = 𝛼𝜉𝑠 + Γ𝑧𝑖𝑡 + 𝛾𝑠𝑒𝑚𝑖 + 𝜖𝑖𝑡 (10)

where 𝑦𝑖𝑡 = 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑡 is a binary variable of investment inaction which takes value 0 if investment

rate ≤ 1% and one otherwise. 𝑧𝑖𝑡 includes various firm-level variables such as lagged (log) capital

stock 𝑘𝑖𝑡−1, (log) labor productivity 𝑎𝑖𝑡 , and the usage of intermediate goods per worker 𝑚𝑖𝑡 . 𝛾𝑠𝑒𝑚𝑖
is the semi year (i.e., time) fixed effects. We standardize 𝜉𝑠 to facilitate the interpretation; more
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specifically, the mean and standard deviation of the variable are normalized to zero and one,

respectively. Since our time-invariant attenuation coefficient only varies at the industry level, we

cannot include firm- or industry-fixed effects in the regressions. We cluster the standard error at

the industry level, as the variable of interest, 𝜉𝑠, varies at the this level. We use the same simulated

firm sample with 21 industries as in Section 4.2.1 to run the same model-based regression.

Table 3 presents the estimation results.
13

Consistent with the raw correlation coefficient at the

industry level, the industry-specific attenuation coefficient negatively affects investment inaction

at the firm level. Moreover, one standard deviation increase in this measure reduces the inaction

probability by 6%, which is quantitatively substantial both in the data and model.
14

Table 3: Incomplete Information and Investment Inaction

Data Model

inaction

𝜉𝑠 -0.0544
∗∗

-0.085***

(0.0252) (0.001)

Time FE Y Y

𝑁 86294 10084473

adj. 𝑅2
0.063 0.024

Note: Standard errors are clustered at the industry level. * 0.10 ** 0.05 *** 0.01. The

degree of information friction is estimated at the industry level. Lagged capital stock,

labor productivity, and the usage of intermediate goods (per worker) are included as the

independent variables. Top and bottom 1% productivity obs. are trimmed out as outliers.

Many other factors at the industry level probably can affect the average inaction rate. For

instance, firms in rising industries (e.g., high-tech) tend to invest more aggressively than those

in declining industries. Moreover, more volatile industries should have lower investment rates,

as higher uncertainty dampens firms’ incentives to invest, ceteris paribus. Therefore, although

the above regression provides supporting evidence for our model’s prediction, it can suffer from

serious econometric issues such as omitted variable bias.

Investment Sensitivity To address the above issue and further explore investment behaviors,

we run an interaction regression by investigating how a realized and unexpected productivity

innovation 𝑤𝑖,𝑡 affects the firm’s investment inaction and investment rate differently in industries

with different degrees of information frictions. The key variable of interest is the interaction

term, 𝑤𝑖𝑡 × 𝜉𝑠. Specifically, we run our regressions at the extensive (whether to invest or not) and

intensive margins (how much to invest in investing) as follows:

𝑦𝑖𝑡 = 𝛽(𝑤𝑖𝑡 × 𝜉𝑠) + 𝛾𝑤𝑖𝑡 + Γ𝑧𝑖𝑡 + 𝛾𝑖 + 𝛾𝑠𝑒𝑚𝑖 + 𝜖𝑖𝑡 (11)

13
Table 10 in Appendix D.3 presents more detailed regression results.

14
Average inaction rate is roughly 36.6% at the semi-year frequency and 20.7% at the annual frequency.
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where 𝑦𝑖𝑡 = 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑡 or 𝑦𝑖𝑡 = 𝑖𝑛𝑣.𝑟𝑎𝑡𝑒𝑖𝑡 denotes the extensive-margin or intensive-margin regres-

sion. 𝑧𝑖𝑡 includes various firm-level variables such as the productivity innovation 𝑤𝑖𝑡 , lag (log)

capital stock 𝑘𝑖𝑡−1, lagged (log) labor productivity 𝑎𝑖𝑡−1, and the usage of intermediate goods per

worker 𝑚𝑖𝑡 . 𝛾𝑠 is the firm fixed effect, and 𝛾𝑠𝑒𝑚𝑖 is the semi year (i.e., time) fixed effects. Again,

we standardize 𝜉𝑠 to facilitate the interpretation. When we run the intensive margin regression,

we restrict our sample to firms active in investment. The benefit of running this interaction re-

gression is that we can now include the firm-fixed effects to tease out the effect of all firm-level

time-invariant factors that affect investment. We use the same simulated firm sample with 21

industries as in Section 4.2.1 to run the same regression.

Table 4: Incomplete Information and Investment Sensitivity

Data Model

inaction inv.rate inaction inv.rate

𝜉𝑠 × 𝑤𝑖,𝑡 0.00885
∗

-0.0408 0.659*** -0.826***

(0.00465) (0.0388) (0.003) (0.002)

𝑤𝑖𝑡 -0.00344 0.0325 -1.029*** 0.677***

(0.00931) (0.0279) (0.001) (0.001)

𝑎𝑖𝑡−1 -0.0281
∗∗

-0.00409 -0.022*** 0.001***

(0.0120) (0.0158) (0.000) (0.000)

Firm FE Y Y Y Y

Time FE Y Y Y Y

𝑁 84656 57143 10084473 2407910

adj. 𝑅2
0.446 0.059 0.240 0.525

Note: Note: Standard errors are clustered at the firm level. Significance levels: * 0.10 **

0.05 *** 0.01. The degree of information friction is estimated at the industry level. Top and

bottom 1% productivity observations are trimmed out as outliers. Lagged capital stock and

the usage of intermediate goods (per worker) are included as the independent variables.

Table 4 presents the regression results.
15

Interestingly, the coefficient 𝛽 is positively signifi-

cant for the investment inaction, which is exactly the same as the result obtained from the model-

simulated data. Moreover, the quantitative magnitude of this estimate is substantial compared

with the coefficient in front of the productivity shock 𝑤𝑖𝑡 . Additionally, the coefficient 𝛽 is nega-

tive and marginally insignificant for the investment rate, the same as the result obtained from the

simulated data. In economic terms, this estimate implies that firms in industries with more severe

information frictions are more likely to remain inactive after a positive productivity innovation

in the current period. Finally, firms in industries with more severe information frictions tend to

increase their investment less after a positive productivity innovation (compared to those facing

15
Table 11 in Appendix D.3 presents detailed results of the estimation.

28



less severe information frictions).

Productivity Volatility and Investment Inaction Finally, we investigate the interaction be-

tween information friction severity and productivity volatility in determining investment inac-

tion. Our model predicts that a rise in the volatility of fundamental productivity, 𝜎𝑎, increases the

inaction rate of investment, but less so when firms face a higher degree of information friction.

Now, we test this prediction.

Since our predictions are cross-sectional predictions and the information friction is measured

at the industry level, we intend to measure fundamental productivity volatility 𝜎𝑎 differences at

the regional level to be linearly independent of industry-specific factors. We calculate the volatil-

ity (i.e., standard deviation) of sales growth and average sales growth for each prefecture.
16

We

do not have enough observations to reliably measure either quantity at the further disaggregated

industry-region level.

Table 5: Incomplete Information, Productivity Volatility, and Investment Inaction

Data Model

inaction

𝑣𝑜𝑙𝑟 × 𝜉𝑠 -0.00549
∗∗

-0.009***

(0.00253) (0.001)

𝜉𝑠 -0.0551
∗∗

-0.145***

(0.0231) (0.001)

𝑣𝑜𝑙𝑟 0.00612 0.041***

(0.00524) (0.000)

Time FE Y Y

𝑁 85920 4178503

adj. 𝑅2
0.067 0.016

Note: Standard errors are clustered at the industry and the prefecture levels. * 0.10 **

0.05 *** 0.01. The degree of information frictions is estimated at the industry level. Sales

growth volatility is estimated at the prefecture level. Top and bottom 1% productivity

observations are trimmed out as outliers. Both the industry-level and prefecture-level in-

dependent variables are standardized. Lagged capital stock, labor productivity, the usage

of intermediate goods (per worker), and prefecture-level mean of firms’ sales growth (i.e.,

the first moment) are included as the independent variables.

16
Prefectures in Japan are analogous to states in the U.S., and there are 47 prefectures in Japan. The measure we

use to calculate firm-level volatility is the firm’s sales growth. To account for firm entry/exit, we use the mid-point

growth rate calculation from Davis et al. (1998), which is formally 𝑠𝑔𝑖𝑡 = 𝑠𝑎𝑙𝑒𝑠𝑖,𝑡−𝑠𝑎𝑙𝑒𝑠𝑖,𝑡−1
(𝑠𝑎𝑙𝑒𝑠𝑖,𝑡+𝑠𝑎𝑙𝑒𝑠𝑖,𝑡−1)/2 , where 𝑖 indexes the firms,

𝑡 refers to time, and the denominator is the average sales in semi-years 𝑡 and 𝑡 − 1. Note that the sales growth rate

defined in this way is bounded by −200% and 200%. Moreover, a firm entry (exit) leads to a 200% (and −200%) sales

growth. We then calculate volatility based on this sales growth measure.
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Specifically, we run the following regression:

𝑦𝑖𝑡 = 𝛽(𝑣𝑜𝑙𝑟 × 𝜉𝑠) + 𝛾1𝜉𝑠 + +𝛾2𝑣𝑜𝑙𝑟 + Γ𝑧𝑖,𝑡 + ̄𝑠𝑔 𝑟 + 𝛾𝑠𝑒𝑚𝑖 + 𝜖𝑖𝑡 (12)

where the regression specifications are similar to the specifications above. 𝑦𝑖𝑡 = 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛𝑖𝑡 denotes

investment inaction dummy. 𝑧𝑖𝑡 includes various firm-level variables such as lagged (log) capital

stock 𝑘𝑖𝑡−1, log labor productivity 𝑎𝑖𝑡 and the usage of intermediate goods (per worker) 𝑚𝑖𝑡 . 𝛾𝑠𝑒𝑚𝑖
is the semi year (i.e., time) fixed effects. We also control the mean of firms’ sales growth ̄𝑠𝑔 𝑟 at

the regional level (i.e., the first moment). Our variable of interest is the interaction of regional

volatility and industrial information friction (𝑣𝑜𝑙𝑟 × 𝜉𝑠). In addition to the 21 industries with

different degrees of information friction 𝜉𝑠 ranging from full information to baseline noise in the

simulated firm sample in Section 4.2.1, we assume the 10,000 firms in each industry are equally

distributed in 20 regions with 𝜎𝑟𝑎 ranging from half to double of the baseline 𝜎𝑎.

Table 5 presents the results supporting our model’s prediction. First, as expected, though not

significant, sales growth volatility negatively affects the investment inaction rate. Second and

importantly, the interaction term between regional sales growth volatility and industrial attenu-

ation is estimated to be negatively significant, implying that a rise in regional-level sales growth

volatility increases the investment inaction rate in industries with low information frictions. This

is exactly what our model predicts. Finally, the industry-level attenuation measure is still esti-

mated to significantly negatively affect investment inaction, even when we control for the first

and second moments of regional-level sales growth volatility. Overall, the evidence confirms our

model’s cross-sectional prediction on how information frictions affect the relationship between

fundamental productivity volatility and investment inaction.

5.5 Robustness Checks

In Appendix D.3, D.4, and D.5, we provide additional results and various robustness checks.

Specifically, we present the full regression results of our main specifications in Appendix D.3.

In Appendix D.4, we first show that our regression result of investment sensitivity presented in

Table 4 is robust to the inclusion of the industry-year fixed effects, which absorb industry-level

overall productivity change/inflation. In fact, the variable of interest becomes large and statisti-

cally more significant, as shown by Table 13. Next, we show that our regression result presented

in Table 4 is robust to using the statistical innovation of labor productivity, which is estimated

from an AR(1) process. See Tables 14 and 15 for details. Finally, we present our regression result

of equation (11) using estimated total factor productivity (TFP). The results presented in Ap-

pendix D.5 are qualitatively similar to the results obtained using labor productivity. In summary,
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our above main results hold in various alternative specifications, including different estimation

methods of productivity, different productivity processes, and different regression specifications.

6 Conclusion

This paper provides a framework to better understand the role of two important frictions that

affect investment dynamics: irreversibility and information frictions. Our framework is tractable

and generates testable theoretical predictions, many of which can be derived analytically. This

stylized model can be a building block for further studies with further features, additional realism,

and more complicated information problems.

We learned that investment irreversibility and information frictions interact in important

ways. Two results stand out. First, information frictions introduce a new type of uncertainty

that raises firms’ willingness to invest, in contrast to the current effects of uncertainty in the

literature; this effect reduces inaction and increases capital. Second, information frictions reduce

the elasticity of investment to aggregate shocks, a valuable property for investment frictions that

have macroeconomic effects in larger models.

We disciplined our model with rich Japanese firm-level data. Firm heterogeneity allowed

us to test the model’s predictions. We found that firms facing worse information frictions are

less inactive and less elastic to productivity shocks. This confirms the theory’s characteristic

prediction: firms should be more elastic on the extensive margin than on the intensive margin.
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Appendix A The General Solution to the HJB

This intermediate result is used in multiple proofs that follow.

Lemma 1. The normalized HJB (5) is solved by

𝑣(𝑥) = 𝑚𝑒𝛼𝑥 + 𝑐1𝑒𝜚1𝑥 + 𝑐2𝑒𝜚2𝑥

for some 𝑐1 and 𝑐2.

Proof. The normalized HJB (5) has a particular solution

𝑣𝑝(𝑥) = 𝑚𝑒𝛼𝑥

with 𝑚 solved by

𝑟𝑚𝑒𝛼𝑥 = 𝑒𝛼𝑥 − 𝜇𝛼𝑚𝑒𝛼𝑥 +
𝜎2

2
𝛼2𝑚𝑒𝛼𝑥

𝑟𝑚 = 1 − 𝜇𝛼𝑚 +
𝜎2

2
𝛼2𝑚

𝑚 =
1

𝑟 + 𝜇𝛼 − 𝜎2
2 𝛼2

The homogeneous solution is

𝑣ℎ(𝑥) = 𝑐1𝑒𝜚1𝑥 + 𝑐2𝑒𝜚2𝑥

where 𝜚1 and 𝜚2 are roots of the polynomial −𝜎2
2 𝜚

2
𝑗 + 𝜇𝜚𝑗 + 𝑟 = 0. Thus the value function is

𝑣(𝑥) = 𝑚𝑒𝛼𝑥 + 𝑐1𝑒𝜚1𝑥 + 𝑐2𝑒𝜚2𝑥

One result of Lemma 1 is that the expected value function �̂�(�̂�) has a similar form.

Corollary 3. The expected value function �̂�(�̂�) satisfies

�̂�(�̂�) = 𝑚𝑒𝛼�̂�𝑒
𝛼2𝜈
2 + 𝑐1𝑒𝜚1�̂�𝑒

𝜚21𝜈
2 + 𝑐2𝑒𝜚2�̂�𝑒

𝜚22𝜈
2 (13)

for some 𝑐.

Proof. The firm’s expectation of the value function derived in Lemma 1 is

�̂�(�̂�) = 𝐸[𝑣(𝑥)|�̂�] = 𝐸[𝑚𝑒𝛼𝑥 + 𝑐1𝑒𝜚1𝑥 + 𝑐2𝑒𝜚2𝑥 |�̂�]

35



The firm’s conditional expectation of 𝑥 is 𝑥 ∼ 𝑁 (�̂� , 𝜈):

= ∫
∞

−∞
(𝑚𝑒𝛼𝑥 + 𝑐1𝑒𝜚1𝑥 + 𝑐2𝑒𝜚2𝑥)𝜙(

𝑥 − �̂�
√
𝜈

)𝑑𝑥 = ∫
∞

−∞
(𝑚𝑒𝛼(𝑥−�̂�)𝑒𝛼�̂� + 𝑐1𝑒𝜚1(𝑥−�̂�)𝑒𝜚1�̂� + 𝑐2𝑒𝜚2(𝑥−�̂�)𝑒𝜚2�̂�)𝜙(

𝑥 − �̂�
√
𝜈

)𝑑𝑥

Then use that 𝑒𝛼(𝑥−�̂�), 𝑒𝜚1(𝑥−�̂�) and 𝑒𝜚2(𝑥−�̂�) are log-normal, where the associated normal distributions

have zero mean and variance 𝛼2𝜈, 𝜚21𝜈 and 𝜚22𝜈 respectively:

= 𝑚𝑒𝛼�̂�𝑒
𝛼2𝜈
2 + 𝑐1𝑒𝜚1�̂�𝑒

𝜚21𝜈
2 + 𝑐2𝑒𝜚2�̂�𝑒

𝜚22𝜈
2

Appendix B Proofs

B.1 Proof of Proposition 1

Proof. The firm’s conditional expectation of 𝑎𝑡 is

𝐸[𝑎𝑡 |Ω𝑡] = 𝑎𝑡−𝜏 + 𝐸[𝑎𝑡 − 𝑎𝑡−𝜏 |Ω𝑡]

From the firm’s perspective, 𝑠𝑡 − 𝑠𝑡−𝜏 is a noisy signal of 𝑎𝑡 − 𝑎𝑡−𝜏:

𝑠𝑡 − 𝑠𝑡−𝜏 = 𝑎𝑡 − 𝑎𝑡−𝜏 + 𝑛𝑡 − 𝑛𝑡−𝜏

the noise 𝑛𝑡 − 𝑛𝑡−𝜏 is independent of productivity and distributed 𝑁 (0, 𝜏𝜎2
𝑛), while 𝑎𝑡 − 𝑎𝑡−𝜏 is

distributed 𝑁 (0, 𝜏𝜎2
𝑎). Therefore:

𝐸[𝑎𝑡 − 𝑎𝑡−𝜏 |Ω𝑡] =
𝐶𝑜𝑣(𝑎𝑡 − 𝑎𝑡−𝜏 , 𝑠𝑡 − 𝑠𝑡−𝜏)

𝑉 𝑎𝑟(𝑠𝑡 − 𝑠𝑡−𝜏)
(𝑠𝑡 − 𝑠𝑡−𝜏) =

𝜏𝜎2
𝑎

𝜏𝜎2
𝑎 + 𝜏𝜎2

𝑛
(𝑠𝑡 − 𝑠𝑡−𝜏)

and the definition 𝛾 = 𝜎2𝑎
𝜎2𝑎+𝜎2𝑛

implies

𝐸[𝑎𝑡 |Ω𝑡] = 𝑎𝑡−𝜏 + 𝛾 (𝑠𝑡 − 𝑠𝑡−𝜏)

The nowcast errors 𝑢𝑡 = 𝑎𝑡 − 𝐸[𝑎𝑡 |Ω𝑡] are normally distributed and have variance

𝑉 𝑎𝑟 (𝑎𝑡 − 𝐸[𝑎𝑡 |Ω𝑡]) = 𝑉 𝑎𝑟 (𝑎𝑡 − 𝑎𝑡−𝜏 − 𝛾 (𝑠𝑡 − 𝑠𝑡−𝜏)) = 𝑉 𝑎𝑟 ((1 − 𝛾)(𝑎𝑡 − 𝑎𝑡−𝜏) − 𝛾 (𝑛𝑡 − 𝑛𝑡−𝜏))

= 𝑉 𝑎𝑟 ((1 − 𝛾)(𝑎𝑡 − 𝑎𝑡−𝜏)) + 𝑉 𝑎𝑟 (𝛾 (𝑛𝑡 − 𝑛𝑡−𝜏)) = (1 − 𝛾)2𝜏𝜎2
𝑎 + 𝛾2𝜏𝜎2

𝑛
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= (
𝜎2
𝑛

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜏𝜎2
𝑎 +(

𝜎2
𝑎

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜏𝜎2
𝑛 =

𝜏𝜎2
𝑎𝜎2

𝑛

𝜎2
𝑎 + 𝜎2

𝑛
= 𝜈

B.2 Proof of Proposition 2

Proof. Proposition 1 implies that the diffusion for �̂�𝑡 is given by

𝑑�̂�𝑡 = 𝑑𝑎𝑡−𝜏 + 𝛾(𝑑𝑠𝑡 − 𝑑𝑠𝑡−𝜏) = (1 − 𝛾)𝑑𝑎𝑡−𝜏 + 𝛾𝑑𝑎𝑡 + 𝛾𝑑𝑛𝑡 − 𝛾𝑑𝑛𝑡−𝜏

= (1 − 𝛾)𝜎𝑎𝑑𝑊 𝐴
𝑡−𝜏 + 𝛾𝜎𝑎𝑑𝑊 𝐴

𝑡 + 𝛾𝜎𝑛𝑑𝑊 𝑛
𝑡 − 𝛾𝜎𝑛𝑑𝑊 𝑛

𝑡−𝜏

The right-hand side is the sum of independent innovations, so they can be recomposed as inno-

vations to a single Wiener process:

𝑑�̂�𝑡 = 𝜎�̂�𝑑𝑊 �̂�

It remains to show that 𝜎�̂� = 𝜎𝐴. The independence of the innovations imply

𝜎2
�̂� = (1 − 𝛾)2𝜎2

𝑎 + 𝛾2𝜎2
𝑎 + 2𝛾2𝜎2

𝑛

= (
𝜎2
𝑛

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜎2
𝑎 +(

𝜎2
𝑎

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜎2
𝑎 + 2(

𝜎2
𝑎

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜎2
𝑛

=
𝜎2
𝑛𝜎2

𝑎

𝜎2
𝑎 + 𝜎2

𝑛
+(

𝜎2
𝑎

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜎2
𝑎 +(

𝜎2
𝑎

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜎2
𝑛

=
𝜎2
𝑛𝜎2

𝑎

𝜎2
𝑎 + 𝜎2

𝑛
+

𝜎4
𝑎

𝜎2
𝑎 + 𝜎2

𝑛
= 𝜎2

𝑎

As a result, innovations to nowcast errors follow

𝑑𝑢𝑡 = 𝑑𝑎𝑡 − 𝑑�̂�𝑡 = 𝜎𝑎𝑑𝑊 𝐴
𝑡 − ((1 − 𝛾)𝜎𝑎𝑑𝑊 𝐴

𝑡−𝜏 + 𝛾𝜎𝑎𝑑𝑊 𝐴
𝑡 + 𝛾𝜎𝑛𝑑𝑊 𝑛

𝑡 − 𝛾𝜎𝑛𝑑𝑊 𝑛
𝑡−𝜏)

= (1 − 𝛾)(𝜎𝑎𝑑𝑊 𝐴
𝑡 − 𝜎𝑎𝑑𝑊 𝐴

𝑡−𝜏) − 𝛾(𝜎𝑛𝑑𝑊 𝑛
𝑡 − 𝜎𝑛𝑑𝑊 𝑛

𝑡−𝜏) = 𝜎𝑢𝑑𝑊 𝑢
𝑡

Again, independence of the innovations implies

𝜎2
𝑢 = 2(1 − 𝛾)2𝜎2

𝑎 + 2𝛾2𝜎2
𝑛

= 2(
𝜎2
𝑛

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜎2
𝑎 + 2(

𝜎2
𝑎

𝜎2
𝑎 + 𝜎2

𝑛)

2

𝜎2
𝑛 = 2

𝜎2
𝑛𝜎2

𝑎

𝜎2
𝑎 + 𝜎2

𝑛
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B.3 Proof of Proposition 3

Proof. The value-matching and super contact conditions at infinity are standard.

Corollary 3 gives the firm’s expectation of the value function in terms of two roots 𝜚1 and

𝜚2. The conditions at infinity imply that the coefficient on the positive root is zero. We write

the remaining negative root 𝜚 and coefficient 𝑐 without subscripts; the expected value function

becomes

�̂�(�̂�) = 𝑚𝑒𝛼�̂�𝑒
𝛼2𝜈
2 + 𝑐𝑒𝜚�̂�𝑒

𝜚2𝜈
2

which in levels is

�̂� (�̂� ; �̂�) = 𝑚�̂� 𝛼𝑒
𝛼2𝜈
2 + 𝑐(�̂�)�̂� 𝜚𝑒

𝜚2𝜈
2 (14)

This solution is written as a function of the boundary �̂�, to be clear about how the choice of �̂�
determines which solution to the HJB is the true value function.

To derive the value-matching condition at the boundary, use that firms are indifferent between

applying the infinitesimal regulator 𝑑𝐼 at the boundary �̂�:

�̂� (�̂�) = �̂� (�̂� + 𝑑𝐼 ) − 𝜓𝑑𝐼

�̂� (�̂�) = �̂� (�̂�) + �̂� ′(�̂�)𝑑𝐼 − 𝜓𝑑𝐼

⟹ 𝜓 = �̂� ′(�̂�)

To derive the super-contact condition at the boundary, first consider the problem of a firm:

their only decision is to select the critical value �̂� that maximizes their value (14). The first order

condition for this problem is

𝑐′(�̂�)�̂� 𝜚𝑒
𝜈
2 = 0 (15)

Next, take the derivative of the value matching condition 𝜓 = �̂� ′(�̂�) with respect to �̂�:

0 = 𝑚𝛼�̂�𝛼−1𝑒
𝛼2𝜈
2 + 𝑐(�̂�)𝜚�̂�𝜚−1𝑒

𝜈
2 + 𝑐′(�̂�)�̂�𝜚𝑒

𝜚2𝜈
2

then substitute using (15) to find the super contact condition:

0 = 𝑚𝛼�̂�𝛼−1𝑒
𝛼2𝜈
2 + 𝑐(�̂�)𝜚�̂�𝜚−1𝑒

𝜚2𝜈
2 = �̂� ′′(�̂�)
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B.4 Proof of Proposition 4

Proof. Per Corollary 3 , the first derivative of the value function in expected log normalized capital

�̂�(�̂�) is

�̂�′(�̂�) = 𝑚𝛼𝑒𝛼�̂�𝑒
𝛼2𝜈
2 + 𝑐𝜚𝑒𝜚�̂�𝑒

𝜚2𝜈
2

Apply this to the value-matching condition from Proposition 3 (using �̂� ′(�̂� ) = 𝑑�̂� (�̂� )
𝑑�̂� = 𝑑�̂� (�̂� )

𝑑�̂�
𝑑�̂�
𝑑�̂� =

�̂�′(�̂�)𝑒−�̂�):
𝜓 = �̂�′(�̂�)𝑒−�̂� = 𝑚𝛼𝑒(𝛼−1)�̂�𝑒

𝛼2𝜈
2 + 𝑐𝜚𝑒(𝜚−1)�̂�𝑒

𝜚2𝜈
2 (16)

Before evaluating the super contact condition, it is helpful to rewrite �̂� ′′(�̂� ) in terms of �̂�:

�̂� ′′(�̂� ) =
𝑑�̂� ′(�̂� )
𝑑�̂�

=
𝑑�̂� ′(�̂� )
𝑑�̂�

𝑑�̂�
𝑑�̂�

=
𝑑�̂�′(�̂�)𝑒−�̂�

𝑑�̂�
1
�̂�

= (�̂�′′(�̂�)𝑒−�̂� − �̂�′(�̂�)𝑒−�̂�)
1
�̂�

= (�̂�′′(�̂�) − �̂�′(�̂�))𝑒−2�̂� = 𝑚𝛼(𝛼 − 1)𝑒(𝛼−2)�̂�𝑒
𝛼2𝜈
2 + 𝑐𝜚(𝜚 − 1)𝑒(𝜚−2)�̂�𝑒

𝜚2𝜈
2

The super contact condition from Proposition 3 becomes

0 = �̂� ′′(�̂�) = 𝑚𝛼(𝛼 − 1)𝑒(𝛼−2)�̂�𝑒
𝛼2𝜈
2 + 𝑐𝜚(𝜚 − 1)𝑒(𝜚−2)�̂�𝑒

𝜚2𝜈
2 (17)

Equations (16) and (17) imply

𝜓(1 − 𝜚) = 𝑚𝛼(𝛼 − 𝜚)𝑒(𝛼−1)�̂�𝑒
𝛼2𝜈
2

⟹ �̂� =
1

1 − 𝛼
log(

𝑚𝛼(𝛼 − 𝜚)
𝜓(1 − 𝜚) ) +

𝛼2𝜈
2(1 − 𝛼)

B.5 Proof of Proposition 5

Proof. Per Proposition 1:

𝑑
𝑑𝑊 𝑎

𝑡−ℎ
𝔼[𝑎𝑡 |Ω𝑡] =

𝑑
𝑑𝑊 𝑎

𝑡−ℎ
(𝑎𝑡−𝜏 + 𝛾 (𝑠𝑡 − 𝑠𝑡−𝜏))

There are two cases. In both,
𝑑𝑠𝑡

𝑑𝑊 𝑎
𝑡−ℎ

= 1. But if 0 ≤ ℎ < 𝜏, then
𝑑𝑎𝑡−𝜏
𝑑𝑊 𝑎

𝑡−ℎ
= 𝑑𝑠𝑡−𝜏

𝑑𝑊 𝑎
𝑡−ℎ

= 0:

[0 ≤ ℎ < 𝜏] ∶
𝑑

𝑑𝑊 𝑎
𝑡−ℎ

𝔼[𝑎𝑡 |Ω𝑡] = 𝛾
𝑑

𝑑𝑊 𝑎
𝑡−ℎ
𝑠𝑡 = 𝛾
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If ℎ ≥ 𝜏, then
𝑑𝑎𝑡−𝜏
𝑑𝑊 𝑎

𝑡−ℎ
= 𝑑𝑠𝑡−𝜏

𝑑𝑊 𝑎
𝑡−ℎ

= 1:

[ℎ ≥ 𝜏] ∶
𝑑

𝑑𝑊 𝑎
𝑡−ℎ

𝔼[𝑎𝑡 |Ω𝑡] = 1 + 𝛾 − 𝛾 = 1

B.6 Proof of Proposition 6

Proof. The general solution to the ODE (6) is

ℎ(�̂�) = 𝑐ℎ1𝑒−𝜌1�̂� + 𝑐ℎ2𝑒−𝜌2�̂�

where 𝜌1 and 𝜌2 are roots of the equation

0 = 𝐷𝜌2𝑗 − 𝛿𝜌𝑗 − 𝜂

Using 𝐷 = 𝜎2𝑎
2 , the roots are given by

𝜌𝑗 =
𝛿
𝜎2
𝑎
±

√
𝛿2

𝜎4
𝑎
+ 2

𝜂
𝜎2
𝑎

To satisfy the boundary condition at infinity, only the positive root can have a non-zero coeffi-

cient. Therefore, the solution simplifies to

ℎ(�̂�) = 𝑐ℎ𝑒−𝜌�̂�

where 𝜌 (without subscript) denotes the positive root
𝛿
𝜎2𝑎
+
√

𝛿2
𝜎4𝑎
+ 2 𝜂

𝜎2𝑎
. The coefficient 𝑐ℎ is yet to

be found.

The remaining boundary condition is that ℎ(�̂�) integrates to one:

1 = ∫
∞

�̂�
𝑐ℎ𝑒−𝜌�̂�𝑑�̂� =

𝑐ℎ
𝜌
𝑒−𝜌�̂�

which implies

𝑐ℎ = 𝜌𝑒𝜌�̂�
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B.7 Proof of Proposition 7

Proof. The joint distribution 𝑓�̂� ,𝑢(�̂� , 𝑢) implies

𝑓𝑥(𝑥) = ℎ(𝑥) ∗ 𝜙(−
𝑥
√
𝜈
)

= ∫
∞

−∞
ℎ(�̂�)𝜙(

�̂� − 𝑥
√
𝜈

)𝑑�̂�

ℎ(�̂�) = 0 for �̂� < �̂�, so the convolution becomes

= ∫
∞

�̂�
ℎ(�̂�)𝜙(

�̂� − 𝑥
√
𝜈

)𝑑�̂� = ∫
∞

�̂�
𝜌𝑒−𝜌(�̂�−�̂�)

1√
2𝜋𝜈

𝑒−
(�̂�−𝑥)2

2𝜈 𝑑�̂�

= 𝑒−
𝑥2
2𝜈 ∫

∞

�̂�
𝜌𝑒𝜌�̂�

1√
2𝜋𝜈

𝑒−
�̂�2−2(𝑥−𝜈𝜌)�̂�

2𝜈 𝑑�̂� = 𝑒−
𝑥2−(𝑥−𝜈𝜌)2

2𝜈 ∫
∞

�̂�
𝜌𝑒𝜌�̂�

1√
2𝜋𝜈

𝑒−
�̂�2−2(𝑥−𝜈𝜌)�̂�+(𝑥−𝜈𝜌)2

2𝜈 𝑑�̂�

= 𝜌𝑒−𝜌(𝑥−�̂�)𝑒
𝜈𝜌2
2 ∫

∞

�̂�

1√
2𝜋𝜈

𝑒−
(�̂�−(𝑥−𝜈𝜌))2

2𝜈 𝑑�̂� = 𝜌𝑒−𝜌(𝑥−�̂�)𝑒
𝜈𝜌2
2 ∫

∞

�̂�
𝜙(
�̂� − (𝑥 − 𝜈𝜌)

√
𝜈

)𝑑�̂�

= 𝜌𝑒−𝜌(𝑥−�̂�)𝑒
𝜈𝜌2
2

(
1 − Φ

(
�̂� + 𝜈𝜌 − 𝑥

√
𝜈 ))

= ℎ(𝑥)𝑒
𝜈𝜌2
2 Φ

(
𝑥 − (�̂� + 𝜈𝜌)

√
𝜈 )

B.8 Proof of Proposition 8

Proof. Decompose normalized capital into the independent nowcasts and errors by 𝑥 = �̂� − 𝑢:

∫
∞

−∞
𝑒𝑥𝑓𝑥(𝑥)𝑑𝑥 = ∫

∞

�̂�
∫

∞

−∞
𝑒�̂�−𝑢𝑓�̂� ,𝑢(�̂� , 𝑢)𝑑𝑢𝑑�̂�

= ∫
∞

�̂�
∫

∞

−∞
𝑒�̂�−𝑢ℎ(�̂�)𝜙(

𝑢
√
𝜈
)𝑑𝑢𝑑�̂� = ∫

∞

�̂�
𝑒�̂�ℎ(�̂�)∫

∞

−∞
𝑒−𝑢𝜙(

𝑢
√
𝜈
)𝑑𝑢𝑑�̂�

Use that ∫ ∞
−∞ 𝑒

−𝑢𝜙( 𝑢√
𝜈)𝑑𝑢 = 𝑒 𝜈2 is the mean of a log-normal distribution:

= 𝑒
𝜈
2 ∫

∞

�̂�
𝑒�̂�ℎ(�̂�)𝑑�̂� = 𝑒

𝜈
2 ∫

∞

�̂�
𝑒�̂�𝜌𝑒−𝜌(�̂�−�̂�)𝑑�̂�

=
𝑒 𝜈2+�̂�𝜌
𝜌 − 1

which is increasing in 𝜈, per Proposition 1, and 𝜈 = 𝜏𝜎2𝑎𝜎2𝑛
𝜎2𝑎+𝜎2𝑛

is increasing in 𝜎2
𝑛 and 𝜏.
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B.9 Proof of Proposition 10

Proof. Per Corollary 3, the firm’s expectation of the value function derived in Lemma 1 is

�̂�(�̂�) = 𝑚𝑒𝛼�̂�𝑒
𝛼2𝜈
2 + 𝑐1𝑒𝜚1�̂�𝑒

𝜚21𝜈
2 + 𝑐2𝑒𝜚2�̂�𝑒

𝜚22𝜈
2

which in levels is

�̂� (�̂� ; �̂�) = 𝑚�̂� 𝛼𝑒
𝛼2𝜈
2 + 𝑐1(�̂�𝐿, �̂�𝑈 )�̂� 𝜚1𝑒

𝜚21𝜈
2 + 𝑐2(�̂�𝐿, �̂�𝑈 )�̂� 𝜚2𝑒

𝜚22𝜈
2 (18)

This solution is written as a function of the boundaries (�̂�𝐿, �̂�𝑈 ), to be clear about how the bound-

ary choice determines which solution to the HJB is the true value function.

To derive the value-matching condition at the lower boundary, use that firms are indifferent

between applying the infinitesimal regulator 𝑑𝐼 at the boundary �̂�𝐿:

�̂� (�̂�𝐿) = �̂� (�̂�𝐿 + 𝑑𝐼 ) − 𝜓+𝑑𝐼

�̂� (�̂�𝐿) = �̂� (�̂�𝐿) + �̂� ′(�̂�𝐿)𝑑𝐼 − 𝜓+𝑑𝐼

⟹ 𝜓+ = �̂� ′(�̂�𝐿)

and a similar argument gives the value-matching condition at the upper boundary:

𝜓− = �̂� ′(�̂�𝑈 )

To derive the super-contact condition at the boundary, first consider the problem of a firm:

their only decision is to select the critical values �̂�𝐿 and �̂�𝑈 that maximize their value (14). The

first order conditions for this problem are

𝜕�̂�𝐿𝑐1(�̂�𝐿, �̂�𝑈 )�̂�
𝜚1𝑒

𝜚21𝜈
2 + 𝜕�̂�𝐿𝑐2(�̂�𝐿, �̂�𝑈 )�̂�

𝜚2𝑒
𝜚22𝜈
2 = 0 (19)

𝜕�̂�𝑈 𝑐1(�̂�𝐿, �̂�𝑈 )�̂�
𝜚1𝑒

𝜚21𝜈
2 + 𝜕�̂�𝑈 𝑐2(�̂�𝐿, �̂�𝑈 )�̂�

𝜚2𝑒
𝜚22𝜈
2 = 0 (20)

Next, take the derivative of the value matching condition 𝜓+ = �̂� ′(�̂�𝐿) with respect to �̂�𝐿:

0 = 𝑚𝛼�̂�𝛼−1𝐿 𝑒
𝛼2𝜈
2 +𝑐1(�̂�𝐿, �̂�𝑈 )𝜚1�̂�𝜚1−1𝐿 𝑒

𝜚21𝜈
2 +𝑐2(�̂�𝐿, �̂�𝑈 )𝜚2�̂�𝜚2−1𝐿 𝑒

𝜚22𝜈
2 +𝜕�̂�𝐿𝑐1(�̂�𝐿, �̂�𝑈 )�̂�

𝜚1
𝐿 𝑒

𝜚21𝜈
2 +𝜕�̂�𝐿𝑐2(�̂�𝐿, �̂�𝑈 )�̂�

𝜚1
𝐿 𝑒

𝜚22𝜈
2
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then substitute using (19) to find the super contact condition:

0 = 𝑚𝛼�̂�𝛼−1𝐿 𝑒
𝛼2𝜈
2 + 𝑐1(�̂�𝐿, �̂�𝑈 )𝜚1�̂�𝜚1−1𝐿 𝑒

𝜚21𝜈
2 + 𝑐2(�̂�𝐿, �̂�𝑈 )𝜚2�̂�𝜚2−1𝐿 𝑒

𝜚22𝜈
2 = �̂� ′′(�̂�𝐿)

Again, a similar argument taking the derivative of the value matching condition 𝜓− = �̂� ′(�̂�𝑈 )
with respect to �̂�𝑈 gives the super contact condition at the upper boundary:

0 = �̂� ′′(�̂�𝑈 )

B.10 Proof of Proposition 11

Before the proof, we prove a lemma that is independently useful for computing the model:

Lemma 2. The difference between the upper and lower log bounds of the inaction region Δ ≡ �̂�𝐻 − �̂�𝐿
solves the implicit equation

𝜓−𝑒(1−𝜚2)Δ − (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−𝜚2)Δ − (𝜚1−1)
(𝜚1−𝜚2)

𝜓+

𝜓−𝑒(1−𝜚2)Δ − 𝜚1 (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−𝜚2)Δ − 𝜚2 (𝜚1−1)
(𝜚1−𝜚2)

𝜓+
= (𝑒

(𝛼−𝜚2)Δ − (𝛼−𝜚2)
(𝜚1−𝜚2)

𝑒(𝜚1−𝜚2)Δ + (𝛼−𝜚1)
(𝜚1−𝜚2))

(𝛼𝑒
(𝛼−𝜚2)Δ − 𝜚1 (𝛼−𝜚2)

(𝜚1−𝜚2)
𝑒(𝜚1−𝜚2)Δ + 𝜚2 (𝛼−𝜚1)

(𝜚1−𝜚2))
(21)

and the lower bound �̂�𝐿 is given in terms of Δ by

�̂�𝐿 =
𝛼2𝜈

2(1 − 𝛼)
−

1
1 − 𝛼

log
(

1
𝑚𝛼

𝜓− − (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−1)Δ − (𝜚1−1)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚2−1)Δ

𝑒(𝛼−1)Δ − (𝛼−𝜚2)
(𝜚1−𝜚2)

𝑒(𝜚1−1)Δ + (𝛼−𝜚1)
(𝜚1−𝜚2)

𝑒(𝜚2−1)Δ )
(22)

Proof. Per Corollary 3, the first derivative of the value function in expected log normalized capital

�̂�(�̂�) is

�̂�′(�̂�) = 𝑚𝛼𝑒𝛼�̂�𝑒
𝛼2𝜈
2 + 𝑐1𝜚1𝑒𝜚1�̂�𝑒

𝜚21𝜈
2 + 𝑐2𝜚2𝑒𝜚2�̂�𝑒

𝜚22𝜈
2

Apply this to the value-matching conditions (using �̂� ′(�̂� ) = 𝑑�̂� (�̂� )
𝑑�̂� = 𝑑�̂� (�̂� )

𝑑�̂�
𝑑�̂�
𝑑�̂� = �̂�′(�̂�)𝑒−�̂�):

𝜓+𝑒�̂�𝐿 = �̂�′(�̂�𝐿) = 𝑚𝛼𝑒𝛼�̂�𝐿𝑒
𝛼2𝜈
2 + 𝑐1𝜚1𝑒𝜚1�̂�𝐿𝑒

𝜚21𝜈
2 + 𝑐2𝜚2𝑒𝜚2�̂�𝐿𝑒

𝜚22𝜈
2 (23)

𝜓−𝑒�̂�𝐻 = �̂�′(�̂�𝐻 ) = 𝑚𝛼𝑒𝛼�̂�𝐻 𝑒
𝛼2𝜈
2 + 𝑐1𝜚1𝑒𝜚1�̂�𝐻 𝑒

𝜚21𝜈
2 + 𝑐2𝜚2𝑒𝜚2�̂�𝐻 𝑒

𝜚22𝜈
2 (24)
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Before evaluating the super contact conditions, it is helpful to rewrite �̂� ′′(�̂� ) in terms of �̂�:

�̂� ′′(�̂� ) =
𝑑�̂� ′(�̂� )
𝑑�̂�

=
𝑑�̂� ′(�̂� )
𝑑�̂�

𝑑�̂�
𝑑�̂�

=
𝑑�̂�′(�̂�)𝑒−�̂�

𝑑�̂�
1
�̂�

= (�̂�′′(�̂�)𝑒−�̂� − �̂�′(�̂�)𝑒−�̂�)
1
�̂�

= (�̂�′′(�̂�) − �̂�′(�̂�))𝑒−2�̂�

Thus the super contact conditions 0 = �̂� ′′(�̂�𝐿) and 0 = �̂� ′′(�̂�𝐻 ) imply �̂�′′(�̂�𝐿) = �̂�′(�̂�𝐿) and �̂�′′(�̂�𝐻 ) =
�̂�′(�̂�𝐻 ) respectively. These conditions become

𝜓+𝑒�̂�𝐿 = �̂�′′(�̂�𝐿) = 𝑚𝛼𝑒𝛼�̂�𝐿𝑒
𝛼2𝜈
2 + 𝑐1𝜚1𝑒𝜚1�̂�𝐿𝑒

𝜚21𝜈
2 + 𝑐2𝜚2𝑒𝜚2�̂�𝐿𝑒

𝜚22𝜈
2 (25)

𝜓−𝑒�̂�𝐻 = �̂�′′(�̂�𝐻 ) = 𝑚𝛼2𝑒𝛼�̂�𝐻 𝑒
𝛼2𝜈
2 + 𝑐1𝜚21𝑒

𝜚1�̂�𝐻 𝑒
𝜚21𝜈
2 + 𝑐2𝜚22𝑒

𝜚2�̂�𝐻 𝑒
𝜚22𝜈
2 (26)

Combining the 𝑏𝐿 value-matching condition (23) and super contact condition (25) can be used

to solve for 𝑐1 and 𝑐2 in terms of 𝑏𝐿. First, difference out the 𝑐2 term:

(1 − 𝜚2)𝜓+𝑒�̂�𝐿 = 𝑚𝛼(𝛼 − 𝜚2)𝑒𝛼�̂�𝐿𝑒
𝛼2𝜈
2 + 𝑐1𝜚1(𝜚1 − 𝜚2)𝑒𝜚1�̂�𝐿𝑒

𝜚21𝜈
2

⟹ 𝑐1𝜚1𝑒
𝜚21𝜈
2 =

(1 − 𝜚2)
(𝜚1 − 𝜚2)

𝜓+𝑒(1−𝜚1)�̂�𝐿 − 𝑚𝛼
(𝛼 − 𝜚2)
(𝜚1 − 𝜚2)

𝑒(𝛼−𝜚1)�̂�𝐿𝑒
𝛼2𝜈
2

Plug back into the value matching condition (23):

𝜓+𝑒�̂�𝐿 = 𝑚𝛼𝑒𝛼�̂�𝐿𝑒
𝛼2𝜈
2 +

(1 − 𝜚2)
(𝜚1 − 𝜚2)

𝜓+𝑒�̂�𝐿 − 𝑚𝛼
(𝛼 − 𝜚2)
(𝜚1 − 𝜚2)

𝑒𝛼�̂�𝐿𝑒
𝛼2𝜈
2 + 𝑐2𝜚2𝑒𝜚2�̂�𝐿𝑒

𝜚22𝜈
2

⟹ 𝑐2𝜚2𝑒
𝜚22𝜈
2 =

(𝜚1 − 1)
(𝜚1 − 𝜚2)

𝜓+𝑒(1−𝜚2)�̂�𝐿 + 𝑚𝛼
(𝛼 − 𝜚1)
(𝜚1 − 𝜚2)

𝑒(𝛼−𝜚2)�̂�𝐿𝑒
𝛼2𝜈
2

Use these expressions to substitute for 𝑐1 and 𝑐2 in the 𝑏𝐻 value matching condition (24):

𝜓−𝑒�̂�𝐻 = 𝑚𝛼𝑒𝛼�̂�𝐻 𝑒
𝛼2𝜈
2

+(
(1 − 𝜚2)
(𝜚1 − 𝜚2)

𝜓+𝑒(1−𝜚1)�̂�𝐿 − 𝑚𝛼
(𝛼 − 𝜚2)
(𝜚1 − 𝜚2)

𝑒(𝛼−𝜚1)�̂�𝐿𝑒
𝛼2𝜈
2
) 𝑒𝜚1�̂�𝐻

+(
(𝜚1 − 1)
(𝜚1 − 𝜚2)

𝜓+𝑒(1−𝜚2)�̂�𝐿 + 𝑚𝛼
(𝛼 − 𝜚1)
(𝜚1 − 𝜚2)

𝑒(𝛼−𝜚2)�̂�𝐿𝑒
𝛼2𝜈
2
) 𝑒𝜚2�̂�𝐻
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Express in terms of the difference Δ ≡ �̂�𝐻 − �̂�𝐿:

𝜓− = 𝑚𝛼𝑒(𝛼−1)(�̂�𝐿+Δ)𝑒
𝛼2𝜈
2 +

(1 − 𝜚2)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚1−1)Δ − 𝑚𝛼
(𝛼 − 𝜚2)
(𝜚1 − 𝜚2)

𝑒(𝛼−1)�̂�𝐿𝑒(𝜚1−1)Δ𝑒
𝛼2𝜈
2

+
(𝜚1 − 1)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚2−1)Δ + 𝑚𝛼
(𝛼 − 𝜚1)
(𝜚1 − 𝜚2)

𝑒(𝛼−1)�̂�𝐿𝑒(𝜚2−1)Δ𝑒
𝛼2𝜈
2 (27)

and do the same for the super contact condition (26):

𝜓− = 𝑚𝛼2𝑒(𝛼−1)(�̂�𝐿+Δ)𝑒
𝛼2𝜈
2 + 𝜚1

(1 − 𝜚2)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚1−1)Δ − 𝑚𝛼𝜚1
(𝛼 − 𝜚2)
(𝜚1 − 𝜚2)

𝑒(𝛼−1)�̂�𝐿𝑒(𝜚1−1)Δ𝑒
𝛼2𝜈
2

+ 𝜚2
(𝜚1 − 1)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚2−1)Δ + 𝑚𝛼𝜚2
(𝛼 − 𝜚1)
(𝜚1 − 𝜚2)

𝑒(𝛼−1)�̂�𝐿𝑒(𝜚2−1)Δ𝑒
𝛼2𝜈
2 (28)

Collect terms in equation (27):

𝜓− = 𝑚𝛼𝑒(𝛼−1)�̂�𝐿𝑒
𝛼2𝜈
2
(𝑒

(𝛼−1)Δ −
(𝛼 − 𝜚2)
(𝜚1 − 𝜚2)

𝑒(𝜚1−1)Δ +
(𝛼 − 𝜚1)
(𝜚1 − 𝜚2)

𝑒(𝜚2−1)Δ)

+
(1 − 𝜚2)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚1−1)Δ +
(𝜚1 − 1)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚2−1)Δ

and equation (28):

𝜓− = 𝑚𝛼𝑒(𝛼−1)�̂�𝐿𝑒
𝛼2𝜈
2
(𝛼𝑒

(𝛼−1)Δ − 𝜚1
(𝛼 − 𝜚2)
(𝜚1 − 𝜚2)

𝑒(𝜚1−1)Δ + 𝜚2
(𝛼 − 𝜚1)
(𝜚1 − 𝜚2)

𝑒(𝜚2−1)Δ)

+ 𝜚2
(𝜚1 − 1)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚2−1)Δ + 𝜚1
(1 − 𝜚2)
(𝜚1 − 𝜚2)

𝜓+𝑒(𝜚1−1)Δ

Rearrange both to isolate �̂�𝐿:

𝑚𝛼𝑒(𝛼−1)�̂�𝐿𝑒
𝛼2𝜈
2 =

𝜓− − (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−1)Δ − (𝜚1−1)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚2−1)Δ

(𝑒
(𝛼−1)Δ − (𝛼−𝜚2)

(𝜚1−𝜚2)
𝑒(𝜚1−1)Δ + (𝛼−𝜚1)

(𝜚1−𝜚2)
𝑒(𝜚2−1)Δ)

𝑚𝛼𝑒(𝛼−1)�̂�𝐿𝑒
𝛼2𝜈
2 =

𝜓− − 𝜚1 (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−1)Δ − 𝜚2 (𝜚1−1)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚2−1)Δ

(𝛼𝑒
(𝛼−1)Δ − 𝜚1 (𝛼−𝜚2)

(𝜚1−𝜚2)
𝑒(𝜚1−1)Δ + 𝜚2 (𝛼−𝜚1)

(𝜚1−𝜚2)
𝑒(𝜚2−1)Δ)

either of which give �̂�𝐿 in terms of Δ.
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Combining the two equations yields an implicit equation determining Δ:

𝜓− − (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−1)Δ − (𝜚1−1)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚2−1)Δ

𝜓− − 𝜚1 (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−1)Δ − 𝜚2 (𝜚1−1)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚2−1)Δ
= (𝑒

(𝛼−1)Δ − (𝛼−𝜚2)
(𝜚1−𝜚2)

𝑒(𝜚1−1)Δ + (𝛼−𝜚1)
(𝜚1−𝜚2)

𝑒(𝜚2−1)Δ)

(𝛼𝑒
(𝛼−1)Δ − 𝜚1 (𝛼−𝜚2)

(𝜚1−𝜚2)
𝑒(𝜚1−1)Δ + 𝜚2 (𝛼−𝜚1)

(𝜚1−𝜚2)
𝑒(𝜚2−1)Δ)

which can be rearranged as

𝜓−𝑒(1−𝜚2)Δ − (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−𝜚2)Δ − (𝜚1−1)
(𝜚1−𝜚2)

𝜓+

𝜓−𝑒(1−𝜚2)Δ − 𝜚1 (1−𝜚2)
(𝜚1−𝜚2)

𝜓+𝑒(𝜚1−𝜚2)Δ − 𝜚2 (𝜚1−1)
(𝜚1−𝜚2)

𝜓+
= (𝑒

(𝛼−𝜚2)Δ − (𝛼−𝜚2)
(𝜚1−𝜚2)

𝑒(𝜚1−𝜚2)Δ + (𝛼−𝜚1)
(𝜚1−𝜚2))

(𝛼𝑒
(𝛼−𝜚2)Δ − 𝜚1 (𝛼−𝜚2)

(𝜚1−𝜚2)
𝑒(𝜚1−𝜚2)Δ + 𝜚2 (𝛼−𝜚1)

(𝜚1−𝜚2))

With Lemma 2 in hand, proving Proposition 11 is straightforward:

Proof of Proposition 11. 𝜈 does not appear in equation (21), so Δ is unaffected by the information

friction. 𝑏𝐹𝐼𝐿 denotes the solution for 𝜈 = 0. Equation (22) implies

�̂�𝐿 = 𝑏𝐹𝐼𝐿 +
𝛼2𝜈

2(1 − 𝛼)

Finally, Δ = �̂�𝐻 − �̂�𝐿 = 𝑏𝐹𝐼𝐻 − 𝑏𝐹𝐼𝐿 implies

�̂�𝐻 = 𝑏𝐹𝐼𝐻 +
𝛼2𝜈

2(1 − 𝛼)

Appendix C Partial Irreversibility

In this appendix, we modify the baseline model to relax the assumption of full irreversibility.

Investment 𝐼 is now partially irreversible. If firms invest, they do so at cost Ψ(𝐼 ):

Ψ(𝐼 ) =
⎧⎪⎪
⎨⎪⎪⎩

𝜓+𝐼 𝐼 ≥ 0

𝜓−𝐼 𝐼 < 0

with 𝜓+ > 𝜓− > 0. Accordingly, their instantaneous profit is 𝜋 = 𝐴1−𝛼𝐾𝛼 − Ψ(𝐼 ).

Optimal firm behavior for this type of problem is characterized by an inaction region: for a

range of capital values (that depends on other state variables), firms choose to neither invest nor
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divest. Firms with partial irreversibility face the usual full information HJB equation (1) in the

inaction region.

Optimal investment behavior is a threshold strategy, as in the full information case. Except

now, a firm invests only if its expected normalized capital �̂� is less than than some critical lower

value �̂�𝐿, and divests only if above some upper value �̂�𝑈 . So solving the firm’s problem comes

down to finding the optimal choice of �̂�𝐿 and �̂�𝑈 . Proposition 3 reports the boundary conditions

associated with the optimum. They are analogous to the full information case.

Proposition 10. Under incomplete information, the boundary conditions consist of two value-
matching conditions:

�̂� ′(�̂�𝐿) = 𝜓+ �̂� ′(�̂�𝑈 ) = 𝜓−

and two super contact conditions:

�̂� ′′(�̂�𝐿) = 0 �̂� ′′(�̂�𝑈 ) = 0

Proof: Appendix B.9

Proposition 11 summarizes the solution to the firm’s problem. The log critical values �̂�𝐿 ≡
log �̂�𝐿 and �̂�𝑈 ≡ log �̂�𝑈 depend on several parameters: the interest rate 𝑟 , depreciation rate 𝛿, time

series properties of the productivity process, the investment and divestment costs 𝜓+ and 𝜓−, and

so forth. But conveniently, most of these terms affect the critical values in the same way that they

would in the full information model. The proposition shows that the difference between full and

incomplete information critical values depend only on the variance of nowcast errors 𝜈, and the

returns to scale 𝛼.

Proposition 11. The critical values of expected normalized capital are

�̂�𝐿 = 𝑏𝐹𝐼𝐿 +
𝛼2𝜈

2(1 − 𝛼)
�̂�𝐻 = 𝑏𝐹𝐼𝐻 +

𝛼2𝜈
2(1 − 𝛼)

where 𝑏𝐹𝐼𝐿 and 𝑏𝐹𝐼𝐻 denote the full information solutions such that 𝜈 = 0.

Proof: Appendix B.10
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Appendix D Quantitative and Empirical Analyses

D.1 Calibration and Data Statistics

We lay out additional data moments for our calibration here. Table 6 shows our moments in semi-

year frequency since the Japanese forecast data is only available in semi-year frequency. Table 7

shows the data moments in semi-year frequency that only use fixed investment as the firms’ total

investment rates. We find the moments are not dramatically different from Table 6. Therefore,

we calibrate our model mainly following the investment rates using firms’ total investment rates.

Table 6: Baseline Moments (Semi-Year Frequency)

Moments Model Data

Investment Moments
Aggregate Investment Rate 2.73% 2.64%

Investment Rate Mean 4.29% 4.00%

Investment Rate S.D. 10.1% 18.7%

Investment Inaction Rate 72.8% 36.6%

Investment Spike Rate 8.4% 2.45%

Other Moments (semi-year)

(Log) Forecast Error Autocorrelation (for sales) - 0.251

Notes: This table summarizes our baseline moments from the model and their mapping

in our data. Since our data is in semi-year frequency, we also report the moments in

semi-year. Data Sources: Economic Outlook Survey and Financial Statement Survey of

Corporations of Japan (2004-2019). All statistics are calculated using variables defined

at the semi-year frequency. Investment is the sum of equipment/machinery/land invest-

ments and purchases of software. Capital is the amount of fixed capital (including the

software). Investment spike refers to investment rate > 20%, and investment inaction

refers to investment rate ≤ 1%. Forecast error is defined as the log deviation of the real-

ized sales in period 𝑡 from the sales forecast made in period 𝑡 − 1. Top and bottom 1% log

sales forecast errors are trimmed (i.e., outliers). The average revenue of firms is around

38 billion JPY (equivalently 330 million USD) per semi-year.

Finally, we want to emphasize that we cannot hit all the moments in our sample partially be-

cause our Japanese firm-level data is highly skewed toward large firms, and we need to match the

expected survey data. The data truncates the sample by utilizing firms with more than 100 million

JPY registered capital only, while the original dataset contains both large and small firms. Table

8 compares the entire sample and the sample used for our analysis. Our sample is significantly

larger in firm sizes.
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Table 7: Moments using Fixed Investment Only (Semi-Year Frequency)

Moments Data

Investment Moments
Aggregate Investment Rate 2.64%

Investment Rate Mean 4.00%

Investment Rate S.D. 18.7%

Investment Inaction Rate 36.6%

Investment Spike Rate 2.45%

Other Moments
(Log) Forecast Error Autocorrelation (for sales) 0.251

Data Sources: Economic Outlook Survey and Financial Statement Survey of Corporations

of Japan (2004-2019). All statistics are calculated using variables defined at the semi-year

frequency. Investment is the sum of equipment/machinery/land investments. Capital

is the amount of fixed capital. Investment spike refers to investment rate > 20%, and

investment inaction refers to investment rate ≤ 1%. Forecast error is defined as the log

deviation of the realized sales in period 𝑡 from the sales forecast made in period 𝑡 −1. Top

and bottom 1% log sales forecast errors are trimmed (i.e., outliers). The average revenue

of firms is around 38 billion JPY (equivalently 330 million USD) per semi-year.

Table 8: Sample Comparison (Quarterly Frequency)

Moments Merged dataset Entire Sample (FSS)

The number of obs. (non-missing sales) 392,158 1,260,836

Average employment 1040.582 491.6123

Average sales (million JPY) 19991.75 8541.767

Average fixed capital stock 59919.34 24842.79

Notes: The time span is 2004-2018 (15 years and 60 quarters)

Table 9: Summary Statistics of Untrimmed Forecast Errors (Semi-Year Frequency)

Variable Obs. mean median standard deviation min. max.

log forecast error of sales 119,335 -.0106 -.0005 0.199 -8.472 5.759

percentage forecast error of sales 119,359 .0198 -.0005 1.556 1 316

Notes: The time span is 2004-2018 (15 years and 29 semi-years). The forecast error is

defined as the deviation of realized sales from the forecasted sales (made at the beginning

of each semi-year).

D.2 Simulation

We lay out the details for our simulation here. For the distributions in Figure 5, we simulate

500,000 firms for 500 quarters. For the industry-level correlations, we simulate 10,000 firms for

50 quarters for each industry. Since our simulation is in discrete time (with a period interval

denoting one quarter), we would like to provide validation that when the interval shrinks, the
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simulation would be consistent with the continuous time model. Figure 9 shows that our simu-

lated distribution of 𝑥 and �̂� is consistent with the theoretical predictions.

Figure 9: Simulated Stationary Distribution for Expected and Realized Normalized Capital

Notes: These figures show the simulation counterparts of the theoretical normalized cap-

ital distribution in Figure 2. The blue histogram is the distribution of 𝑥 , and the orange

histogram is the �̂� distribution. We exclude the large fixed mess of entry firms at the

boundary so the simulated stationary distribution is consistent with the theoretical one.

D.3 Regression Results using Labor Productivity

We present the full regression results of our main specifications in this subsection of appendix.

See Tables 10-12 elow for more details.

D.4 Main Robustness Checks

First, regression results reported in Table 11 are robust to including the industry-year fixed ef-

fects, which absorb industry-level overall productivity change/inflation. In fact, the variable of

interest becomes large and statistically more significant, as shown by Table 13. Next, although

log productivity is assumed to follow a random walk in the model, it is possibly true that the log

productivity follows an AR(1) process in the data. As a result, we need to reconstruct our (log)

productivity innovation in such a case. To tackle this problem, we first run an AR(1) regression

using the current (and lagged) log productivity and obtain the statistical innovations of the log

50



Table 10: Incomplete Information and Investment Inaction: Labor Productivity

𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1
𝜉𝑠 -0.0762

∗∗
-0.0786

∗∗∗
-0.0544

∗∗

(0.0282) (0.0259) (0.0252)

𝑎𝑖,𝑡 0.0386 0.0586
∗

0.104
∗∗∗

(0.0340) (0.0312) (0.0375)

𝑘𝑖,𝑡−1 -0.0496
∗∗∗

-0.0489
∗∗∗

(0.00859) (0.00838)

𝑚𝑖,𝑡 -0.0255

(0.0210)

Time FE Yes Yes Yes

𝑁 99027 99027 86294

adj. 𝑅2
0.038 0.069 0.063

Note: Standard errors are clustered at the industry level. * 0.10 ** 0.05 *** 0.01. The degree

of information friction is estimated at the industry level. Top and bottom 1% productivity

obs. are trimmed out as outliers.

Table 11: Incomplete Information and Investment Sensitivity: Labor Productivity

(1) (2) (3) (4)

𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑖𝑛𝑣. 𝑟𝑎𝑡𝑒 (𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 1)

𝜉𝑠 × 𝑤𝑖,𝑡 0.00848
∗

0.00885
∗

-0.0400 -0.0408

(0.00466) (0.00465) (0.0386) (0.0388)

𝑤𝑖,𝑡 0.00213 -0.00344 0.0170 0.0325

(0.00931) (0.00931) (0.0179) (0.0279)

𝑎𝑖,𝑡 -0.0204
∗

-0.0281
∗∗

-0.0259 -0.00409

(0.0119) (0.0120) (0.0299) (0.0158)

𝑚𝑖,𝑡 -0.00891 -0.00523 0.00593 -0.00534

(0.00551) (0.00552) (0.00411) (0.00795)

𝑘𝑖,𝑡−1 0.0771
∗∗∗

-0.152

(0.00857) (0.103)

Firm FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

𝑁 84656 84656 57143 57143

adj. 𝑅2
0.444 0.446 0.045 0.059

Note: Standard errors are clustered at the firm level. Significance levels: * 0.10 ** 0.05 ***

0.01. Top and bottom 1% productivity observations are trimmed out (i.e., outliers).
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Table 12: Investment Inaction and Region-level Volatility: Labor Productivity

𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1
𝑣𝑜𝑙𝑟 × 𝜉𝑠 -0.0113

∗∗
-0.00927

∗∗
-0.00549

∗∗

(0.00434) (0.00368) (0.00253)

𝜉𝑠 -0.0769
∗∗∗

-0.0796
∗∗∗

-0.0551
∗∗

(0.0260) (0.0238) (0.0231)

𝑣𝑜𝑙𝑟 0.00684 0.00636 0.00612

(0.00513) (0.00529) (0.00524)

𝑚𝑒𝑎𝑛𝑟 -0.0199
∗∗

-0.0318
∗∗∗

-0.0365
∗∗∗

(0.00873) (0.0107) (0.00817)

𝑎𝑖,𝑡 0.0375 0.0565
∗∗

0.101
∗∗∗

(0.0291) (0.0264) (0.0320)

𝑘𝑖,𝑡−1 -0.0512
∗∗∗

-0.0507
∗∗∗

(0.00748) (0.00727)

𝑚𝑖,𝑡 -0.0249

(0.0195)

Time FE Yes Yes Yes

𝑁 98515 98515 85920

adj. 𝑅2
0.039 0.072 0.067

Note: Standard errors are clustered at the industry level. * 0.10 ** 0.05 *** 0.01. The degree

of information friction is estimated at the industry level. Top and bottom 1% productivity

obs. are trimmed out as outliers.

productivity (i.e., the residuals). The estimated serial correlation is around 0.91, close to the ran-

dom walk case. Next, we use statistical innovations to rerun the investment sensitivity regression

specified in equation (11). The regression results are reported in Tables 14 and 15. It is clear that

the estimated interaction effect (around 0.009) is barely changed.

D.5 Robustness Checks using Total Factor Productivity

So far, we have utilized labor productivity (i.e., revenue per worker) and its innovation. The

labor productivity measure is transparent but imperfect, as it does not exclude the impact of

other factors, such as capital and usage of intermediate goods, on firm-level productivity. In

the literature, the total factor productivity (TFP) is an often-used productivity measure. In this

subsection, we implement robustness checks for our empirical findings using this alternative

productivity measure. The conclusion is that all empirical findings we have documented are

qualitatively unchanged.

We construct our TFP measure by using the standard approach from the IO literature (e.g.,

Olley and Pakes (1996) and Levinsohn and Petrin (2003)). Specifically, we follow Olley and Pakes

(1996) to use investment as the proxy for the TFP to do the inversion from investment to the TFP

(conditioning on the capital stock). We believe that this approach is appropriate for our analysis
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Table 13: Incomplete Information and Investment Sensitivity:

Labor Productivity and Industry-year Fixed Effects

(1) (2) (3) (4)

𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑖𝑛𝑣. 𝑟𝑎𝑡𝑒 (𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 1)

𝜉𝑠 × 𝑤𝑖,𝑡 0.00991
∗∗

0.01000
∗∗

-0.0424 -0.0424

(0.00473) (0.00472) (0.0406) (0.0401)

𝑎𝑖,𝑡−1 -0.00857 -0.0146 -0.0313 -0.0127

(0.0120) (0.0119) (0.0326) (0.0202)

𝑤𝑖,𝑡 0.00735 0.00302 0.0146 0.0276

(0.00930) (0.00919) (0.0170) (0.0253)

𝑚𝑖,𝑡 -0.00879
∗

-0.00633 0.00705 -0.00133

(0.00524) (0.00514) (0.00443) (0.00585)

𝑘𝑖,𝑡−1 0.0824
∗∗∗

-0.168

(0.00823) (0.114)

Industry-year FE Yes Yes Yes Yes

Firm FE Yes Yes Yes Yes

Time (semi-year) FE Yes Yes Yes Yes

𝑁 84656 84656 57137 57137

adj. 𝑅2
0.448 0.451 0.044 0.059

Note: Standard errors are clustered at the firm level. Significance levels: * 0.10 ** 0.05 ***

0.01. Top and bottom 1% productivity observations are trimmed out (i.e., outliers).

Table 14: Incomplete Information and Investment Sensitivity:

AR(1) Process of Labor Productivity

(1) (2) (3) (4)

𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑖𝑛𝑣. 𝑟𝑎𝑡𝑒 (𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 1)

𝜉𝑠 × 𝑤𝑖,𝑡 0.00952* 0.00976* -0.0408 -0.0414

(0.00500) (0.00499) (0.0396) (0.0396)

𝑎𝑖,𝑡−1 -0.0218* -0.0288** -0.0266 -0.00653

(0.0112) (0.0113) (0.0305) (0.0173)

𝑤𝑖,𝑡 0.000772 -0.00456 0.0182 0.0334

(0.00934) (0.00935) (0.0189) (0.0287)

𝑚𝑖,𝑡 -0.00890 -0.00536 0.00548 -0.00552

(0.00547) (0.00549) (0.00403) (0.00807)

𝑘𝑖,𝑡−1 0.0764*** -0.153

(0.00861) (0.103)

Firm FE Yes Yes Yes Yes

Time FE Yes Yes Yes Yes

𝑁 84313 84313 56911 56911

adj. 𝑅2
0.444 0.446 0.045 0.059

Note: Standard errors are clustered at the firm level. Significance levels: * 0.10 ** 0.05 ***

0.01. Top and bottom 1% productivity observations are trimmed out (i.e., outliers).
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Table 15: Incomplete Information and Investment Sensitivity:

AR(1) Process of Labor Productivity and Industry-year Fixed Effects

(1) (2) (3) (4)

𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑖𝑛𝑣. 𝑟𝑎𝑡𝑒 (𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 1)

𝜉𝑠 × 𝑤𝑖,𝑡 0.00905
∗

0.00922
∗

-0.0416 -0.0419

(0.00498) (0.00496) (0.0402) (0.0399)

𝑎𝑖,𝑡−1 -0.0104 -0.0158 -0.0324 -0.0157

(0.0114) (0.0113) (0.0334) (0.0222)

𝑤𝑖,𝑡 0.00561 0.00161 0.0148 0.0270

(0.00931) (0.00921) (0.0173) (0.0250)

𝑚𝑖,𝑡 -0.00863 -0.00631 0.00704 -0.000940

(0.00525) (0.00515) (0.00442) (0.00566)

𝑘𝑖,𝑡−1 0.0818
∗∗∗

-0.169

(0.00827) (0.114)

Industry-year fixed effects Yes Yes Yes Yes

Firm fixed effects Yes Yes Yes Yes

Time (semi-year) fixed effects Yes Yes Yes Yes

𝑁 84313 84313 56906 56906

adj. 𝑅2
0.449 0.451 0.043 0.059

Note: Standard errors are clustered at the firm level. Significance levels: * 0.10 ** 0.05 ***

0.01. Top and bottom 1% productivity observations are trimmed out (i.e., outliers).

for two reasons. First, the firms in our sample are large firms. Thus, the usual zero investment

issue that constrains the use of the Olley and Pakes approach is less of a concern in our case.

Second, the usual collinearity problem (between the usage of the intermediate goods and the

labor choice) is less of a concern in our context as well, as we use firm investment as the proxy.

Thus, we estimate a firm-level Cobb-Douglas production function that inputs labor, capital, and

intermediate goods. The estimates of the production are reported as follows:

𝑏𝑒𝑡𝑎𝑙 = 0.219; 𝛽𝑘 = 0.116; 𝛽𝑚 = 0.585,

which shows that the uncovered (revenue) production function displays slightly decreasing re-

turns to scale. We recover the TFP for each firm-year observation in our data based on these

estimates.

Next, we re-estimate the industry-specific coefficient that governs the impulse response of

the (log) sales forecast error made in period 𝑡 + 1 with respect to the realized (log) productivity

innovation in period 𝑡 for the 30 industries. The industry-level attenuation coefficients estimated

using the labor productivity and the TFP are highly correlated (correlation coefficient: 0.66), lend-

ing us the confidence to use these two measures to gauge the degree of industry-level information

frictions.
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Figure 10: Estimated Attenuation Coefficients across Industries: TFP

Note: This figure shows how the coefficient governs the impulse response of the (log)

sales forecast error made in period 𝑡 + 1 with respect to the realized (log) productivity

innovation in period 𝑡. Each dot denotes the estimate for an industry (with the 95% confi-

dence interval), and there are 30 industries in total. Top and bottom 1% observations are

trimmed out (i.e., outliers).

We rerun the regressions specified in equations (11) using firm-level TFP measures and the at-

tenuation coefficients obtained using the TFP measures. Table 16 presents the regression results.

Although the coefficient of interest (𝜉𝑠 × 𝑤𝑖,𝑡) becomes smaller for investment inaction, the esti-

mate is still positive and statistically significant, consistent with what we found using the labor

productivity measure. The specification using the industry-year fixed effects yields the results

that are reported in Table 17, which are similar to the result reported in Table 16. In summary,

our documented empirical findings are robust to various TFP measures we use to construct the

attenuation coefficients.
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Table 16: Incomplete Information and Investment Sensitivity: TFP

(1) (2) (3) (4)

𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑖𝑛𝑣. 𝑟𝑎𝑡𝑒 (𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 1)

𝜉𝑠 × 𝑤𝑖,𝑡 0.00581
∗

0.00600
∗

0.000342 0.000204

(0.00340) (0.00339) (0.00105) (0.00105)

𝑎𝑖,𝑡−1 -0.112
∗∗∗

-0.103
∗∗∗

0.0235
∗∗∗

0.0208
∗∗∗

(0.0132) (0.0134) (0.00516) (0.00527)

𝑤𝑖,𝑡 -0.0404
∗∗∗

-0.0350
∗∗∗

0.0117
∗∗∗

0.00976
∗∗∗

(0.00848) (0.00854) (0.00282) (0.00284)

𝑚𝑖,𝑡 -0.00566 -0.00418 0.00476
∗∗∗

0.00360
∗

(0.00634) (0.00637) (0.00184) (0.00193)

𝑘𝑖,𝑡−1 0.0727
∗∗∗

-0.0408
∗∗∗

(0.00873) (0.00498)

Firm FE Y Y Y Y

Time FE Y Y Y Y

𝑁 80508 80508 54747 54747

adj. 𝑅2
0.445 0.447 0.303 0.312

Note: Standard errors are clustered at the firm level. Significance levels: * 0.10 ** 0.05 ***

0.01. Top and bottom 1% productivity observations are trimmed out (i.e., outliers).

Table 17: Incomplete Information and Investment Sensitivity:

TFP and using Industry-year Fixed Effects

(1) (2) (3) (4)

𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 = 1 𝑖𝑛𝑣. 𝑟𝑎𝑡𝑒 (𝑖𝑛𝑣. 𝑖𝑛𝑎𝑐𝑡𝑖𝑜𝑛 ≠ 1)

𝜉𝑠 × 𝑤𝑖,𝑡 0.00471 0.00492 0.000664 0.000518

(0.00340) (0.00339) (0.00105) (0.00105)

𝑎𝑖,𝑡−1 -0.0989
∗∗∗

-0.0848
∗∗∗

0.0225
∗∗∗

0.0165
∗∗∗

(0.0130) (0.0131) (0.00565) (0.00561)

𝑤𝑖,𝑡 -0.0325
∗∗∗

-0.0249
∗∗∗

0.0106
∗∗∗

0.00739
∗∗

(0.00845) (0.00849) (0.00295) (0.00293)

𝑚𝑖,𝑡 -0.00121 -0.000539 0.00354
∗

0.00299

(0.00615) (0.00615) (0.00183) (0.00185)

𝑘𝑖,𝑡−1 0.0807
∗∗∗

-0.0457
∗∗∗

(0.00856) (0.00535)

Firm FE Y Y Y Y

Industry-time FE Y Y Y Y

𝑁 80508 80508 54741 54741

adj. 𝑅2
0.449 0.451 0.316 0.327

Note: Standard errors are clustered at the firm level. Significance levels: * 0.10 ** 0.05 ***

0.01. Top and bottom 1% productivity observations are trimmed out (i.e., outliers).
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